Rhino Robot Arm

Scott Lawson and Greg Stromire
ECE 4/578
Fall 2013

Table of Contents

Where We Started
The Arm, The Controller, and The Pendant
Controller Communication

Rhino Arm Limitations

Basic Arduino-Based Controller
Interactive Genetic Algorithm - The Evolved Wave
IGA Hardware
IGA Usage Diagram
IGA Physical Setup
IGA Software
Program Structure
IGA Results
LEAP Motion Control - Fuzzy Gestures
LEAP Motion Controller and Node.js
Program Flow

Rhino Arm Control and Programming Reference
Initialization

Power on sequence

Power off sequence

Interface
RS-232C Configuration
Data Lines

Movement
Commands
Source Code Listings
Counting LEDs
Interactive Genetic Algorithm
LEAP Motion Sensor Control

Where We Started

The Arm, The Controller, and The Pendant

the 1980’s which includes the XR-3 robotic arm,
the Mark IIl controller, and the Teach pendant.

The arm itself has 6 degrees of freedom:
1.

4.
5,
6.

The Rhino Arm is an educational tool from

Motor A: “Fingers” - Opening and closing
for picking up objects.

Motor B: “Wrist” - Continuous rotation
around pinching fingers.

Motor C: “Forearm” - Tilts up and down ®
around farthest joint. :

Motor D: “Elbow” - Reaches out and in toward the arm body.
Motor E: “Shoulder” - Lifts the bulk of the arm up and down.
Motor F: “Waist” - Rotates around its base.

We were able to use the Teach pendant to test the motors and other commands on the
arm, and found that the “forearm” motor was nonfunctional, the “fingers” only allowed 2
states - off and on - and the other motors incremented in steps. We also discovered that,
at least with the pendant, only one motor could be in motion at a given time.

Controller Communication

hardware of the Mark III and construct an updated

Our original plan was to remove the dated

controller and interface. We soon determined that - e
the hardware controller was an integral part of XR SERIES MARK il CONTROLLER
the entire device and decided it was not worth the widescloh TEACH PENDANT ;

effort to disconnect them. We then researched 7 wooe

what we could find about the Rhino Arm. We e
found that to program it with an external device, > Z
we could communicate with the controller over

&) SELECT

MOTOR PORTS
D 3

G o

serial (see reference at the end of this document

for correct serial specifications).

Rhino Arm Limitations

During initial testing, we discovered several limitations of the Rhino Arm that we
decided would not prevent us from implementing our designs, but that would have to be
acknowledged and controlled for:

e Ribbon Cables

Each of the six ribbon cables connecting the motors to the controllers tend to

interfere with the motion of the arm, particularly when rotating about the waist.

The cables were carefully routed through the back of the housing to minimize

their effect on movement, but entanglements still occurred.

e Frequent Lock Ups

The Mark III Controller frequently became unresponsive during testing. We made

many attempts to diagnose the cause, but none became apparent. One possibility

is that the older hardware was not able to handle the rate of transmission of motor

commands. Although the RS232 transmissions themselves occurred at the 9660

Baud rate required by the controller, the frequency of whole transmissions may

be too high for the controller to handle. No sufficiently detailed technical

information, such as timing diagrams, was available to confirm this.
e Malfunctioning Joint

We found that the “forearm” motor (motor D) was completely unresponsive to

commands from the teach pendant. When we manually sent the motor a command

through the Arduino, the motor would engage and move the arm in the correct
direction, but would stop moving at the end of the designated motion. We found

that the register that tracks motor movement was not being updated for motor D

while in motion. We chose to accept the limitation and continue without

attempting to fix it because the remaining functioning motors were sufficient to
complete our tasks.
e Lack of Absolute Positioning

All movements for the controller are relative to its current position. There is no

home position. The only information available from the controller about the

motors is the number of steps remaining for the last movement command to finish
its motion. There is also the ability to check the statuses of limit switches
associated with some of the motors, but since some of the motors provide
continuous rotation and thus do not have a corresponding switch, there is no way
to program a consistent starting position. This makes tasks like forward and
reverse kinematics considerably more difficult.

Basic Arduino-Based Controller

After familiarizing ourselves with the system, our next task was to send
commands ourselves to make the Rhino Arm move without the use of the teach pendant.
Using “The Reference about Rhino XR Robot System” that we found online, we were able to
code a basic Arduino sketch to generate and send motion commands out to the controller
and have the robotic arm respond. Source code is attached. From this experiment, we
confirmed that the “forearm” motor was unusable, though for our Arduino tests the
motor would begin a movement and not stop until a hard reset was sent. We also
discovered that we could in fact send multiple motor commands and see simultaneous
movement.

Interactive Genetic Algorithm - The Evolved Wave

The Rhino Robot arm presented a unique challenge for implementing an
Interactive Genetic Algorithm due to its structure and limited hardware resources.
Unlike creating facial expressions or walking motions for robots, the Rhino Arm has little
precision and no way to determine an absolute location. The goal we decided upon was to
evolve a series of commands that would produce a smooth motion similar to a waving
hand. The main attribute of this problem that made it appropriate for an IGA is that while
there are many correct solutions, none of them are intuitively obvious.

IGA Hardware

IGA Usage
Diagram

Motor Polling
Commands Response

IGA Physical Setup

In the physical setup, note the jumper wires from the Arduino Uno to the RS232
shield. The shield could not be placed directly on the Arduino because the Arduino Uno
has only one serial port which shares pins between the USB input and the TX and RX
lines. When the shield is plugged directly into the board, the voltage regulator on the
shield interferes with the programming information incoming from the host computer.
The solution was to connect the shield to only via jumpers. The jumpers were
disconnected from the shield’s RX and TX pins during programming.

IGA Software

The IGA was implemented in ISO C++ with additional Arduino libraries. The
language was chosen due to its compatibility with the Arduino. Additionally, C++ offered
an object-oriented approach, unlike C.

Program Structure

Class |GA
Class Motion
Class Command
Current Generation
Array ob Motions StructureCommand
Attributes
Array o5
: Commands
Next Generation
Array of Motions —— Motar
Direction
Distance
Methods
Methods
motionmutaté)

Iga:executecurrentj motion:crosfconst motion soujce Other Members
Igasave c_urreno:) Array of Available Motors
Iga:nexf_motionj)
lga:generatenext) Methods

- commancnutaté)
commanctrossovdaionst command source

Each command to move a motor is comprised of an ASCII character designating the
motor, an ASCII “+” or “-” to designate the direction of the motion, and an integer
between 0 and 127 inclusively. The command is followed by a newline character to
initiate the movement. Each complete motion the program generates is comprised of an
array of 25 individual move commands, a value which is variable by altering the #define
macro MAX_COMS and recompiling.

At initialization, the first generation of 5 motions (also configurable via macros) is
randomly generated. In this case, a randomly generated motion means that each of the
components of the move commands (motor, direction, and distance) is randomly selected
from legal values. The user uses the buttons on the Arduino to execute the motions,
saving preferred motions. The preferred motions are stored into the next generation
array of motions and are used to seed the next generation. The number of new generation
organisms that are created by crossover and mutation is selected randomly. Any leftover
slots in the next generation that have not been filled by mutation or crossover become
newly generated random motions. The constant introduction of new random motions

prevents premature convergence by continuously introducing new random variation into
the population.

IGA Results

Ultimately the IGA was unsuccessful. The primary reason for this was the
difficulty communicating with the Rhino Arm at high speeds. The internal structure of
the controller imposed constraints on how commands could be sent. For example, if one
command is sent to move motor A in the positive direction for 100 steps and another
command is sent to move motor A in the negative direction for 10 steps before the first
action completes, the register that induces the movement is overwritten and the
remainder of the first command is lost.

Our response was to implement a global array (poll_queue[]) that is treated like a
queue for tracking the order in which commands were sent. We then send requests to
the controller to tell the Arduino how far each motor still has to move before its current
motion is complete. As responses are received, another global array (movements[]) is
updated with each motor’s distance remaining until their movements are complete.
Before sending any motor move commands, the corresponding element in movements|]
is checked. If the motor is currently moving, the move command is stalled until the
motor finishes.

This approach is effective, but accomplishing it consumed much of our
development time. As a result, we were unable to create a routine that is a prerequisite
for testing our IGA: a method for locating and moving to a known starting point. The
Rhino Arm tracks movement with rotary encoders and integer values stored in registers.
There is no absolute location or home. Proper testing of the IGA algorithm would ideally
have the arm in the same starting position every time to prevent the arm from collapsing
on itself or over-rotating at a given joint.

Lastly, the low amount of RAM available in the Arduino may have contributed to
our inconclusive results. We achieve the random motion we desired, but began to have
erratic results after multiple generations. The motions themselves are statically allocated
to minimize memory fragmentation, but the program as a whole has a memory footprint
of ~1.5KB, and there is only 2KB available on the Arduino Uno. Even though our statically
allocated memory is under the limit with a small buffer remaining, deep copy operations
of entire motions (consisting of 25 commands each) may have exceeded the maximum
amount of memory available, leading to inconsistent results.

LEAP Motion Control - Fuzzy Gestures

LEAP Motion Controller and Node.js

The LEAP motion controller is a USB computer vision device optimized for up to 2
hand and 10 finger gestures in a 3D space of 2-3 ft3. The sensor has much better
resolution and response latency vs. the Microsoft Kinect at smaller distances. It provides
access to position and direction vectors, velocities, and other relevant data. It is
supported by a strong developer community and thorough documentation. We chose to
interface the LEAP with the Rhino Arm for several reasons. First, we already owned a
LEAP between us and we were eager to try it. Second, we liked the idea of pairing the
older, outdated technology of the arm with the futuristic control of the LEAP sensor.
Lastly, we thought that arm-control and arm-sensing was a natural and intuitive fit.

Rhino Arm

Serial
9660 baud

Arduino] RS232

‘TwoSerial.
ino"

Serial
115200 baud

Computer
‘Leap2Rhino.js’

WebSocket

[LEAP Sensor]

Our initial research discovered several
examples of the LEAP Motion sensor interfacing with
various Arduino circuits, and they were implemented
with Node.js. Our code for the LEAP controlled Rhino
Arm was developed with those examples as
inspiration, though no particular example project
served as the base of our code. Node.js provides the
dynamic language of JavaScript, with a large focus on
web development, and has several useful packages on
hand for use from the open-source community.

The LEAP Motion device communicates with our
code through the web socket protocol which fit well
with the web-focused Node.js paradigm. Our Node
code, ‘Leap2Rhino.js,’ receives this web socket data
and makes control decisions by polling and sending
commands. To send a message, a signal is sent over
115200 baud USB to an Arduino Mega. The Arduino
Device collects the serial data from the program until
a newline character is received, after which the full
command has been collected in the buffer and is then
sent over 9660 baud RS232 (using a dedicated shield)
to the Rhino arm for control. The Mega model was
chosen because it has multiple serial ports enabling
the two-way communication necessary.

Program Flow

The Leap2Rhino program takes input from
the LEAP sensor, interprets it based on a fuzzy
ruleset, and sends out appropriate commands to
the Rhino Mark III controller. Once a LEAP frame
is received, the program processes it through
fuzzy membership analysis. The membership
functions correspond to identifiable gestures
from the LEAP sensor.

To be able to control 6 motors (the
malfunctioning motor was included in the code
for future use if repaired or replaced) with one
hand, certain gestures needed to be clearly
defined. This was implemented with fuzzy states

for which each frame was a proportional member.

A couple of pseudocode examples of this are as
follows:

[LEAF Sensor]

4

Fuzzification of Discrete Sensor Data

g

Program Logic on Fuzzy Data

4

Defuzzification to Motion Commands

&

Rhino Arm

IF fingers ARE spread AND hand IS rolled left THEN send rotate wrist clockwise

motion

IF fingers ARE NOT spread AND hand IS moved up THEN send shoulder up motion

An example fuzzification function:

LEAP Frame Fuzzification

Moved Left Centered

—

Membership

o

Moved Right

-85 0

X-Axis Value

85

A LEAP frame can be detected as fast as 60 times per second, but for our purposes
that speed is unnecessary, so it was trimmed down to a maximum speed of 10 per second.
Once detected, the frame is then fuzzified and determined if it should send commands.
For every motion to be sent, the motor letter (‘A’ to ‘F’) is stored in a mutable array. For
subsequent commands, it is first checked to see if that motor is in motion (if it is in this
mutable array). If it is, then the command is unsent. If it is not, then the program will
send the motion command and immediately send a polling command for that motor.

The polling command watches the steps remaining being returned for a given
motor. If there are few enough steps remaining (not exactly 0, because that would cause
stuttering motion), then the motor is removed from the mutable array and a poll request
is sent for the next motor in the array, if there is one. This approach guarantees fairness
for each motor because of the sequential turns for each motor polled. If the control
program reads a given LEAP frame and determines that another motion is necessary for
continuous activity, then it will send the command and add the motor to the array.

A global index keeps track to which motor the incoming poll response is
corresponding. Because the receive function occurs asynchronously from data input
events on the serial line, and because there are global shared variables, a lock was
required to prevent race conditions. The control portion must obtain the lock to send
motion commands that access the shared array. Similarly, the polling portion must obtain
the lock before accessing the the shared array. Once the array is guaranteed exclusive
access, the control runs smooth with several motors and gestures at once.

Rhino Arm Control and Programming Reference

(Adapted from “The Reference about Rhino XR Robot System”)

Initialization

Power on sequence

If the Rhino arm does not complete its power sequence, it can exhibit unresponsive
behavior.

1. Check Motor Power switch is OFF.

2. Turn ON main controller power - the main power switch is at rear panel of the

controller.

3. Turn ON the motor power switch.

4. Push reset switch.

5. Check ‘init’ is displayed in Teach pendant 7-segment LED panel.

10

Power off sequence

1. Turn OFF arm motor power.
2. Turn controller power OFF.
3. Turn the computer OFF.

Interface

RS-232C Configuration
Configure the RS-232C serial output port for the following:

e 9660 Baud

e 7 Data bits

e Even parity

e 2 stop bits
Data Lines

The Rhino controller does not use a handshaking protocol. Therefore, the DB 25 connectors
must be modified and capable of both sending and receiving data. The Mark III controller uses
only 3 of 25 communication lines on the DB25 connector.

e Line 2: carries data transmitted by controller, received by host computer.

e Line 3: carries data received by the controller, sent by host computer.

e Line 7: the common data ground line.

Movement

The controller has 3 buffers:
1. MOTOR ID buffer
2. DIRECTION buffer
3. MOVE COUNT buffer

Additionally, each motor has its own ‘error’ register that starts at zero. A motor moves
when its corresponding error register contains a value other than zero.

If part of the arm is moved without the use of commands (e.g. if the arm is pushed), then
the corresponding motor’s encoder will adjust the ‘error’ register to the new value. The
controller will then turn on the motor in the opposite direction in order to correct the
movement and return the arm to its previous position.

To move a motor programmatically, issue a command for the motor ID, the direction, the
number of units to move, and a carriage return. An example is “C-25\n”. This will select

11

«

the motor ‘C’, set the direction to minus ‘-, set a move count to 25, and start the

movement ‘\n’. Actions occur after each character is sent, as described:

1.

When the motor ID “C” is received, it is stored in the MOTOR ID buffer, it sets the
DIRECTION buffer to plus, and the MOVE COUNT buffer is cleared. This is a feature
of the motors command.

When the direction “-” is received, it is stored in the DIRECTION buffer.

When the “25” is received, it is stored in the MOVE COUNT buffer. The value “25”
is sent as each individual digit- each digit sent to the MOVE COUNT buffer
multiplies the current value of the buffer by 10 and adds the next digit. So, to
continue with the example, “2” is sent to a zeroed buffer, giving the result [(0*10)
+ 2], or 2. The next digit “5” would produce the result [(2*10) + 5], or 25, the
correct number.

. When the <return> character is received, the controller takes the value from the

MOVE COUNT buffer and either adds it (if the DIRECTION buffer holds a plus) or
subtracts it (if the DIRECTION buffer holds a minus) from the ‘error’ register
corresponding to the ID in the MOTOR ID buffer. The controller would then sense
that an ‘error’ buffer contained a non-zero value and would try to correct this by
moving a motor in the direction that would return the value to zero.

For this example, it would subtract 25 from the ‘error’ buffer associated with motor C and
thus initiate the motor C to move in the direction that would return the ‘error’ value to
its zero state.

Commands

<return> : Carriage return (initiate a move)
? : Return distance remaining
A-H : Set motor movement value
: Inquiry command (read limit switched C-H)
: Inquiry command (read limit switched A-B and inputs)
: Inquiry command (read inputs)
: Turn Aux #1 port ON
: Turn Aux #1 port OFF
: Turn Aux #2 port ON
: Turn Aux #2 port OFF
: Set output bits high
: Controller reset
: Set output bits low

X WO TWOZ 2R — —

: Stop motor

12

Source Code Listings

Counting LEDs

1. CountingLEDs.ino

Interactive Genetic Algorithm

2. rhino_iga.ino
Main.h

iga.cpp

iga.h
motion.cpp
motion.h
commands.cpp
commands.h

© O N VAW

10. functions.cpp
11. functions.h
12. parameters.h

LEAP Motion Sensor Control

13. TwoSerial.ino
14. Leap2Rhino.js

13

W O NU R W N R

NN N NN N0 U U U UG U s R R DR R D DR W WWWWW W W W WNNNNMNNNNNNRRRRBRRRBRR B
U B WNRF O WOWNOU B WNEROWONOURWNEREOWO®NOUVUEBEWNHEREOWLWO®NOOUWEB®EWNREOWLWO®NOUWE® WNROWO®DNO U S WN KL O

// Scott Lawson

// Greg Stromire

// ECE 4/578 Perkowski

// Fall 2013

!/

// Counting LEDs Arduino Test for Rhino Arm

// Set up macros

// Button Pins
#define B_MOTOR 2
#define B_DIR 3
#define B_COUNT 4
#define B_SEND 5

// LED Pins

#define L_DIGIT5 6
#define L_DIGIT4 7
#define L_DIGIT3 8
#define L_DIGIT2 9
#define L_DIGIT1 10
#define IL_DIGITO 11
#define L_COMMAND 12

// Motors

#define MOTOR_A
#define MOTOR_B
#define MOTOR_C
#define MOTOR_D
#define MOTOR_E
#define MOTOR F
#define MOTOR_G
#define MOTOR_H

Noudk WO

// Directions
#define NEGATIVE '-'
#define POSITIVE '+'
// Serial port

#define BAUD 9660 // 9600 Baud rate
#define CONTROL SERIAL 7E2 // 7 Data bits, even parity,

// Define required variables
// Array of motor chars
char motors[(] = {'A', 'B', 'Cc', 'D', 'E', 'F', 'G', 'H'};

// Tracking variables

2 stop bits

int motor_ state = 0; // tracks currently selected motor

int dir_ state = POSITIVE; // tracks currently selected direction
int count_state = 0; // tracks move count

// Others

int bState_Motor = 0;

int last_bState_Motor = 0;
int bState Dir = 0;

int last bState Dir = 0;
int bState_Count = 0;

int bState Send = 0;

int last_bState_Send = 0;

// Define Functions

// Update LEDs to reflect input integer
void update LEDs(int value) {

digitalWrite(L DIGIT5, ((value >> 5) & 0xl));
digitalWrite(L_DIGIT4, ((value >> 4) & 0xl));
digitalWrite(L DIGIT3, ((value >> 3) & 0x1l));
digitalWrite(L DIGIT2, ((value >> 2) & 0xl));

76 digitalWrite(L DIGIT1, ((value >> 1) & 0x1l));
77 digitalWrite(L DIGITO, (value & 0xl));

78
79 return;
80 || }
81
82| // Turn off all LEDs
83 | void clear LEDs()({
84
85 digitalWrite(L DIGITS5, LOW);
86 digitalWrite(L_DIGIT4, LOW);
87 digitalWrite(L_DIGIT3, LOW);
88 digitalWrite(L DIGIT2, LOW);
89 digitalWrite(L DIGIT1, LOW);
90 digitalWrite(L_DIGITO, LOW);
91
92 return;
93 }
94
95 | // Motor update

96 | void increment motor () {
97
98 digitalWrite(L COMMAND, LOW);

99 update LEDs (motor_state);
100

101 ++motor_state;

102

103 if (motor_state > 7)

104 motor_state = 0;

105

106 update LEDs(motor_ state);
107

108 return;

109 |}

110
111| // Direction update

112 || void change direction(){
113
114 digitalWrite(L_ COMMAND, LOW);
115 update_ LEDs(dir_state);

116
117 dir state = !dir_state;
118
119 update LEDs(dir_state);
120
121 return;
122 }

123
124 | // Count update

125 || void increment count(){
126
127 digitalWrite(L COMMAND, LOW);
128 update LEDs(count state);

129
130 delay(100); // wait 100 ms

131
132 ++count_state;

133

134 if (count_state > 63)

135 count_state = 0;

136

137 update LEDs(count state);
138

139 return;

140 |}

141
142| // Send move command
143 || void send _move(){

144
145 digitalWrite(L COMMAND, HIGH);

146 clear LEDs();

147

148 Serial.print(motors[motor_state]);
149

150 switch (dir_state)

151 {

152 case 0:

153 Serial.print (NEGATIVE);
154 break;

155

156 case 1:

157 Serial.print (POSITIVE);
158 break;

159 }

160 Serial.println(count_ state);
161

162 return;

163 | }

164

165

166

167 | // Run Program
168
169 | void setup(){
170
171 // set button pins as inputs
172 pinMode (B _MOTOR, INPUT);

173 pinMode (B _DIR, INPUT);

174 pinMode (B_COUNT, INPUT);

175 pinMode(B_SEND, INPUT);

177 // set LED pins as outputs
178 pinMode(L DIGITS5, OUTPUT);
179 pinMode(L DIGIT4, OUTPUT);
180 pinMode(L_DIGIT3, OUTPUT);
181 pinMode(L DIGIT2, OUTPUT);
182 pinMode(L_DIGIT1, OUTPUT);
183 pinMode(L_DIGITO, OUTPUT);
184 pinMode (L_COMMAND, OUTPUT);

186 // turn off all LEDs
187 clear LEDs();

188
189 // set up serial port

190 Serial.begin(BAUD, CONTROL);
191
192 // reset controller
193 // Serial.println('Q');
194

195 Serial.print('F');
196 Serial.print('+");
197 Serial.println(127);
198 Serial.print('A');
199 Serial.print('+");
200 Serial.println(127);
201 Serial.print('B');
202 Serial.print('+");
203 Serial.println(127);
204 Serial.print('C');
205 Serial.print('-");

206 Serial.println(127);
207

208 // turn on command LED
209 digitalWrite(L COMMAND, HIGH);
210 }

211
212 | void loop(){
213
214 bState Motor = digitalRead(B_MOTOR) ;

215 if (bState Motor && !last bState Motor){
216 increment motor();

217 }

218
219 bState Dir = digitalRead(B_DIR);

220 if (bstate_Dir && !last_bState Dir) {

221 change direction();

222 }

223

224 // Count button is intentionally not debounced

225 bState Count = digitalRead(B_COUNT);

226
227
228
229
230
231
232
233
234

236
237
238
239
240

if (bState Count){
increment count();

}

bState_Send = digitalRead(B_SEND);
if (bsState_Send && !last_bState_Send){
send move();

}

last bState Motor = bState Motor;
last_bState_Dir = bState Dir;
last_bsState_Send = bState_Send;

W O NU R W N R

NN N NN N0 U U U UG U s R R DR R D DR W WWWWW W W W WNNNNMNNNNNNRRRRBRRRBRR B
U B WNRF O WOWNOU B WNEROWONOURWNEREOWO®NOUVUEBEWNHEREOWLWO®NOOUWEB®EWNREOWLWO®NOUWE® WNROWO®DNO U S WN KL O

* File: rhino_iga.ino

* Project: ECE 578 Rhino Robot Wave Motion

* Modified Date: 12/14/2013

* Contents: Implements genetic algorithm to allow Rhino robot to generate a wave motion

K */

#include "main.h"
// Define required variables

// Array of motor chars
iga generator;

int bState RunEPR
int bState StrEPR
int bState RunMot
int bState_ NextMot =
int bState StrMot = 1;

int last bState RUunEPR =
int last_bState_StrEPR
int last bState RunMot =
int last bState NextMot =
int last_bState_StrMot = 1

Inn
[

.
’
7
.
r
1

~e

]
e

Ne = Ne Ne o
~e

int movements[NUM MOTORS] = {0};
int poll queue[MAX COMS];
int poll write index = 0;
int poll read index = 0;

// Serial Event Handler
void serialEvent(){

* Receives serial communication back from the robot controller

*
* Inputs: None
* OQutputs: None

if (Serial.available()){
// read from serial
char inChar = (char)Serial.read();

movements[poll queue[poll read index]] = (int) inChar;
++poll_read_ index;

}

return;

}

// Run Program
void setup(){
movements [NUM_MOTORS] = {0};
poll queue[MAX COMS];
poll write_index = 0;
poll read index = 0;

// set button pins as inputs
pinMode (B_RUN_EPR, INPUT);
pinMode (B_STR EPR, INPUT);
pinMode (NEXT MOT, INPUT);
pinMode (RUN_MOT, INPUT);
pinMode (STR_MOT, INPUT);

// activate internal pullups
digitalWrite(B_RUN_EPR, HIGH);
digitalWrite(B_STR_EPR, HIGH);
digitalWrite (NEXT MOT, HIGH);
digitalWrite (RUN_MOT, HIGH);
digitalWrite(STR_MOT, HIGH);

// set LED pins as outputs
pinMode (LEDO, OUTPUT);
pinMode (LED1, OUTPUT);
pinMode (LED2, OUTPUT);

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145

}

// turn off all LEDs

digitalWrite(LEDO, LOW);
digitalWrite(LED1l, LOW);
digitalWrite(LED2, LOW);

// See random number generator
randomSeed (analogRead(0));

// set up serial port
Serial.begin(BAUD, CONTROL);

// reset controller
Serial.println('Q');

void loop(){

bState RunEPR = digitalRead(B_RUN_EPR);
if (!bState RunEPR && last bState RunEPR) {
//run epr
digitalWrite(LEDO, HIGH);
delay(100);
digitalWrite(LEDO, HIGH);
}

bState_StrEPR = digitalRead(B_STR_EPR);
if (!bState StrEPR && last bState StrEPR){
//store epr

}

bState RunMot = digitalRead(RUN_MOT);
if (!bState_RunMot && last_bState_RunMot) {
generator.execute_current();

}

bState NextMot = digitalRead(NEXT_MOT);
if (!bState NextMot && last bState NextMot) {
if (generator.next motion()){
digitalWrite(LEDO, HIGH);
delay(500);
digitalWrite(LED1, HIGH);
delay(500);
digitalWrite(LED2, HIGH);
delay(500);
digitalWrite(LEDO, LOW);
digitalWrite(LED1l, LOW);
digitalWrite(LED2, LOW);
generator.generate_next();
}
}

bState StrMot = digitalRead(STR_MOT);
if (!bState_StrMot && last_bState_ StrMot){
if (generator.save_current()){
digitalWrite(LEDO, HIGH);
delay(500);
digitalWrite(LEDO, LOW);
}
}

last bState RunEPR bState RunEPR;
last_bState_ StrEPR bstate_ StrEPR;
last_bsState_RunMot = bState RunMot;
last bState NextMot = bState NextMot;
last_bState_ StrMot = bState_StrMot;

W O NU R W N R

e e e e
o Ule W N RO

* File: main.h

* Project: ECE 578 Rhino Robot Wave Motion
* Modified Date: 12/14/2013

* Contents: Dependencies for rhino_iga.cpp

#ifndef _MAIN H_
#define _MAIN H_

//#include <stdlib.h>
#include "iga.h"
#include "parameters.h"
#include "functions.h"

#endif

W O NU R W N R

NN N NN N0 U U U UG U s R R DR R D DR W WWWWW W W W WNNNNMNNNNNNRRRRBRRRBRR B
U B WNRF O WOWNOU B WNEROWONOURWNEREOWO®NOUVUEBEWNHEREOWLWO®NOOUWEB®EWNREOWLWO®NOUWE® WNROWO®DNO U S WN KL O

* File: iga.cpp

* Project: ECE 578 Rhino Robot Wave Motion

* Modified Date: 12/14/2013

* Contents: Function implementations for IGA class

K e e e
#include "iga.h"

}

}
return;
bool iga::execute_current(){
* Sends the current motion over RS232 to the robot.
*
* Inputs: None
* Qutputs:
* bool status indicates success or failure of send operation

}

Constructor for iga class - generates the first generation of motions

Inputs: None
Outputs: None

// initialize pointers and counts

current count = 0;
next count = 0;
last_saved = -1;

// create first generation
for (int i=0; i<MOTIONS; ++i){
current gen[i].generate();

}

// initialize next_generation to a known state
for (int i=0; i<MOTIONS; ++i){
next gen[i].reset();

bool status = 1;
current gen[current count].send();

return (status);

bool iga::save current(){

Called when the current motion is considered good enough to keep around for the next generation.

Copies the current motion into the next generation queue.

Outputs:

bool <no name> 1 if max number of motions have been saved for the next generation

*
*
*
* Inputs: None
*
*
*

0 if current motion was saved

// The conditionals around the assignment are there to make sure that the current motion

// cannot be added to the next generation seed twice

if (current_count == last_saved){
return (1);
}
next gen[next count] = current gen[last saved];

last_saved = current_count;
++next count;

return (0);

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

bool iga::next motion(){
Moves to the next motion in the current generation

*

*

* Inputs: None

* Outputs:

* <no name> bool 0 if move to next motion was successful

* 1 if current motion is last in current generation

if (current count+l == MOTIONS) {
return (1);

}
++current_count;

return (0);

}

void iga::generate next(){

* Called when the entire current generation has been evaluated and the next generation must be
generated. Clears current generation and populates it with a new current.

Inputs: None
Outputs: None

int 1
int j

0; // loop index

0;

// decide how many of the new generation will be generated by mutation and crossover
int num mutate = floor(MUT RATE/100)*next_count;

int num_cross = floor(CROSS_RATE/100)*next count;

int left_over = MOTIONS - num mutate - num cross;

// allocate arrays to store indices of mutation and crossover destinations
int mutate_ indices[num mutate];
int cross_indicesl[num cross];
int cross_indices2[num cross];

if (left over != MOTIONS){

// initialize all elements to -1
for (i=0; i<num mutate; ++i){

mutate indices[i] = -1;

}

for (i=0; i<num cross; ++i){
cross_indicesl[i] = -1;
cross_indices2[i] = -1;

}

// select which next generation elements will be crossed and which will be mutated - these
select_random(num_mutate, next_ count, mutate_indices);
select random(num cross, next count, cross_indicesl, mutate indices, num mutate);
// make sure there are enough cross indexes available to be exclusive with the sources
if (next _count >= 2*num_cross){
select random(num cross, next count, cross_indices2, cross indicesl, num cross);
}
else{
// not enough elements to be exclusive - some may be involved in multiple crossovers
select_random(num_cross, next_count, cross_indices2);

}

// Perform crosses and mutations

i=20;

j=0;

while (i<num mutate) {
current gen[i] = next gen[mutate indices[i]];
current gen[i].mutate();
++1i;

}

151 while (i<num cross+num mutate){

152 current _gen[i] = next gen[cross_indicesl[]j]];
153 current gen[i].cross(next gen[cross_indices2[j]]);
154 ++i;

155 ++3;

156 }

157 }

158

159 // £ill in leftover next generation motions with new random ones
160 i = MOTIONS -1;

161 while (left_over > 0){

162 current gen[i].generate();

163 --left over;

164 —-—1i;

165 }

166

167

168 // reset counters

169 current_count = 0;

170 last_saved = -1;

171 next _count = 0;

172

173 return;

174 }

175

176

W O NU R W N R

BB B DWW WWWWWWWWRNNNNNDNNNNNNKRERRBRRRRRB P 2
W NP O WVWO®ONOU B WNROWODWNOUBS WNEROWOWNOUSWNR O

* File: iga.h

* Project: ECE 578 Rhino Robot Wave Motion

* Modified Date: 12/14/2013

* Contents: IGA class interface and dependencies

#ifndef _IGA H
#define _IGA H_

#include "math.h"
#include "motion.h"
#include "parameters.h"

class iga{

private:
// no private members - the iga is public to it can be accessed without making
// extra copies

public:

// Data members

motion current gen[MOTIONS];
int current count;

int last_saved;

motion next gen[MOTIONS];
int next count;

// Methods

iga(); // constructor - generates initial current generation

bool execute_current(); // sends the current motion to the rhino robot

bool save_current(); // save current motion for next generation reproduction

bool next motion(); // move to the next motion

void generate next(); // generates new "current" generation from "next gen" and random
// additions

}i
#endif

W O NU R W N R

NN N NN N0 U U U UG U s R R DR R D DR W WWWWW W W W WNNNNMNNNNNNRRRRBRRRBRR B
U B WNRF O WOWNOU B WNEROWONOURWNEREOWO®NOUVUEBEWNHEREOWLWO®NOOUWEB®EWNREOWLWO®NOUWE® WNROWO®DNO U S WN KL O

* File: motion.cpp

* Project: ECE 578 Rhino Robot Wave Motion

* Modified Date: 12/14/2013

* Contents: Function implementations for motion class

K */

#include "motion.h"

motion: :motion() {
/K e

* Constructor for motion class

*
* Inputs: None
* Outputs: None

return;

}

void motion::reset(){

* Resets all command values to 1 - used mainly for debugging
*

* Inputs: None
* OQutputs: None

for (int i=0; i<MAX COMS; ++i){
sequence[i].reset();

}

return;

}
void motion::generate(){

* Randomly generates a sequence of commands to produce a complete motion
*

* Inputs: None
* OQutputs: None

// randomly create motion
for (int i=0; i<MAX COMS; ++i){
sequence[i].generate();

}

return;

}
motion& motion::mutate(){

Randomly mutates commands within a motion - mutation occurs in place, but a pointer to self is
returned if needed

Inputs: None
Outputs:
motion& <no name> address of self

int mut_rate; // determines how many individual commands will be mutated
int* mut_indices; // pointer to array of indices indicating which elements to mutate

// miscellaneous loop indices
int i = 0;

// perform individual command mutations
mut rate = (int) ceil(((random(MAX DELTA))/100)*MAX COMS); // determine how many elements to mutate

// select which commands will be mutated
select random(mut rate, MAX COMS, mut_ indices);

for (i=0; i<mut rate; ++i){
sequence[mut_indices[i]].mutate();

76 }
77
78 return (*this);
79 |}

80
81 | motion& motion::cross(const motion source){

82 || /K e
83 | * Randomly crosses attributes with attributes from the input motion, source

84 | *

85 * Inputs:

86| * const motion source input motion that will provide some new attributes

87 * Outputs:

88| * motioné& *this pointer to self for assignment operations

89 | e e */

90
91 int cross_num = (int) ceil(((random(MAX DELTA))/100)*MAX COMS); // determines how much of the motion

92 // will be crossed over
93 int* cross_sources; // contains the indices of the elements that will be crossover sources
94 int* cross_targets; // contains indices of the elements that will be crossover targets
95

96 select_random(cross_num, MAX_ COMS, cross_targets); // determine target indices

97 select random(cross_num, MAX COMS, cross_sources); //determine source indices

98

99 // perform crossovers

100 for (int i=0; i<cross_num; ++i)({

101 sequence[cross_targets[i]].crossover (source.sequence[cross_sources[i]]);

102 }

103

104 delete [] cross_sources;

105 delete [] cross_targets;

106

107 return (*this);

108 }

109

110 | motion& motion::operator=(const motion source) {

111 || /¥ e e e e e e e
112 | * Performs a deep copy of the source motion

113 | *

114 * Inputs:

115 * const motion source source motion to copy

116 || *

117 * Outputs:

118 | * *this motioné& pointer to new self

119 || e */
120

121 for (int i=0; i<MAX COMS; ++i){

122 sequence[i] = source.sequence[il];

123 }

124

125 return (*this);

126 }

127

128 | bool motion::send() {

129 || /¥ e e e e e
130 * Sends all commands in current motion over RS232

131 *

132 | * Inputs: None

133 * Outputs:

134 * bool status indicates success of send operation

135 || m e —————— - */
136

137 bool status = 0;

138

139 for (int i=0; i<MAX COMS; ++i){

140 sequence[i].send();

141 }

142

143 status = 1;

144

145 return (status);

146 || }

147

W O NU R W N R

BB W W W W WWWWWWNNNNDNNNNNNNRRRRRRRR P B
H O W O N0 U & WNHFHFOWO®NOUWUEB® WNHEREOWODNO U & WN KL O

* File: motion.h

* Project: ECE 578 Rhino Robot Wave Motion

* Modified Date: 12/14/2013

* Contents: Motion class interface and dependencies

K */

#ifndef _MOTION_H_
#define _MOTION_H_

//#include <stdlib.h>
//#include <math.h>
//#include <fstream>
#include "command.h"
#include "parameters.h"
#include "functions.h"

class motion{

private:
// private members not utilized due to memory constraints on Arduino
// public members allows tasks to be accomplished with less copying

public:

// Data members
command sequence[MAX COMS];

// Methods

motion(); // constructor

void generate(); // generates a random motion

motion& mutate(); // randomly mutates commands in the sequence

motion& cross(const motion source); // randomly crosses attributes of two motions
motion& operator=(const motion source); // overloaded assignment operator

void reset(); // sets all values to 1 for debugging

bool send(); // send all commands over RS232

#endif

W O NU R W N R

NN N NN N0 U U U UG U s R R DR R D DR W WWWWW W W W WNNNNMNNNNNNRRRRBRRRBRR B
U B WNRF O WOWNOU B WNEROWONOURWNEREOWO®NOUVUEBEWNHEREOWLWO®NOOUWEB®EWNREOWLWO®NOUWE® WNROWO®DNO U S WN KL O

* File: command.cpp

* Project: ECE 578 Rhino Robot Wave Motion

* Modified Date: 12/14/2013

* Contents: Function implementations for command class

#include "command.h"
cmd attrs& cmd attrs::operator=(const cmd attrs source){
Performs an assignment copy of the source cmd_attrs

*
*
* Inputs:

* const cmd_attrs source source command to copy
*

*

*

Outputs:
this command pointer to self

motor = source.motor;
dir = source.dir;
dist = source.dist;

return (*this);

}
command : : command () {

* Constructor for command gen class
*

* Inputs: None

* Outputs: None

motors[0] = 'C'
motors([1l]
motors[2]

I
=

return;

}
void command::reset(){

* Resets parameters to known state
*

* Inputs: None
* OQutputs: None

component .motor motors([0];
component.dir = '+';
component.dist = 1;

return;

}
void command::generate(){
* Populates the command structure with random values

*
* Inputs: None
* OQutputs: None

// choose motor
component.motor = motors[random(NUM_MOTORS)];

// choose direction

if (random(2)){
component.dir

}

else{
component.dir

}

.

~e

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150

// choose distance

component.dist = (unsigned char) random(MAX DIST);
return;
}
unsigned char command::select random() {
/K e
* Randomly selects command attributes for mutation or crossover. Returns a single char whose 3
* least-significant bits represent motor, direction, and distance respectively. A 1 in those
* locations means they are selected.
*
* Inputs: None
* Outputs:
* selection char indicates which attributes should be used for mutation or crossover

unsigned char selection = 0;

int rate = (int) ceil((random(MAX DELTA)/100)*3); // determine how many elements to select

int candidate = 0;

if (rate == 3){
selection = 7;

}

else if (rate == 0){
selection = 0;

}

else if (rate == 1)({
selection = 1 << random(3);

}

else{

selection = 1 << random(3);

do{
candidate = 1 << random(3);
}while(candidate == selection);

selection = selection | candidate;

}

return (selection);

}
void command::mutate(){

* Randomly mutates the parameters of a command - changes are made in place.
*

* Inputs: None
* OQutputs: None

unsigned char mutation_selector = select_random();
int modifier = 0;

if (mutation_selector & 0x1l){ // mutate motor
component.motor = motors[random(NUM MOTORS)];

}

if (mutation_ selector & 0x2){ // mutate direction
if (random(2)){

component.dir '+

}

else{
component.dir

~e

}
}

if (mutation_selector & 0x4){ // mutate motion distance
modifier = (unsigned char) ceil(((random(MAX DELTA))/100)*component.dist);

// decide whether to add or subtract the modifier

// also check for overflow and underflow conditions resulting from adding or subtracting the

// modifer - assign limits (either MAX DIST or 0) in those cases

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

if (random(2)){

?

MAX DIST : (component.dist + modi

0

(component.dist - modifier);

component.dist = (component.dist + modifier < component.dist)
}
else{
component.dist = (component.dist - modifier > component.dist)
}
}
return;
}
void command::crossover (const command source){
/K e
* Randomly performs crossovers of command attributes
*
* Inputs:
* const command source other command to be crossed with
* Outputs: None

unsigned char cross_selector = select_random();

if (cross_selector & 0xl){
component.motor = source.component.motor;

}

if (cross_selector & 0x2){
component.dir = source.component.dir;

}

if (cross_selector & 0x4){
component.dist = source.component.dist;

return;
command& command: :operator=(const command source){
N e e EE——————
* Performs an assignment copy of the source command
*
* Inputs:
* const command source source command to copy
*
* Qutputs:
* *this command* pointer to new self
___ */
component = source.component;

return (*this);

}
bool command::send() {
R R e o EEE———————.
* Sends the command over RS232
*
* Inputs: None
* Outputs:
* bool status result of send operation

bool status = 0;
int repeat_count = 0;
int index = 0;

// resolve motor name into index
index = find_ index(component.motor);

// check array of current movements to see if motor is already in motion

while (movements[index] > 0x25)({
++repeat_count;
if (repeat count > 15){
return (1l);
}
}

226
227
228
229
230
231
232
233
234

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

254
255
256
257
258
259

261

// send the command
Serial.print(component.motor);
Serial.print(component.dir);
Serial.println(component.dist);

// add the motor's index to the queue for waiting on poll response
poll queue[poll write_ index] = index;
++poll_write_index;

// send request for the poll
Serial.print(component.motor);

Serial.println('?"');

return (status);

}
int command::find index(char motor letter){
2
* Translates a char representation of the motor into the index of the current motor array
*
* Inputs:
* char motor letter letter name of motor to find
* Qutputs:
* int <no name> index of motor in current movement array
for (int i=0; i<NUM_MOTORS; ++i){
if (motors[i] == motor letter)({
return(i);
}
return (-1);
}

W O NU R W N R

O U UugUu e R R DR R B DR WWWWWWWWWWNNNNDNNNNNNRNRRRRRRR R B B
U B WNKF O WO®NO U B WNHREOWLWO®NOUWUEWNHREOWO®NOWE®EWNHEREOWO®NO U WN KL O

*
*
*
*

#i

File: command.h

Project: ECE 578 Rhino Robot Wave Motion

Modified Date: 12/06/2013

Contents: XR-2 Rhino Robot arm command class interface, command structure and dependencies

fndef _COMMAND H_

#define COMMAND H_

//
//

#include <stdlib.h>
#include <math.h>

#include "parameters.h"
#include "Arduino.h"

extern int movements[NUM MOTORS];
extern int poll queue[MAX COMS];
extern int poll_write_ index;
extern int poll_read_index;

struct cmd_attrs{

}i

// Data Members
char motor;

char dir;

unsigned char dist;

// Methods
cmd_attrs& operator=(const cmd_attrs source); // overloaded assignment operator

class command{

}i

private:

unsigned char select random(); // randomly selects command attributes for mutation and crossover

char motors[NUM_MOTORS]; // array of allowed motors

public:
// Data members
cmd _attrs component;

// Methods

command(); // constructor

void generate(); // randomly populates the command

void mutate(); // randomly mutates the command

void crossover(const command source); // randomly crosses over command attributes

command& operator=(const command source); // overloaded assignment operator

bool send(); // send command over RS232

void reset(); // reset to known state

int find_index(char motor letter); // resolve motor letter into index of current motion array

#endif

W O NU R W N R

N NN N0y OV UT U U UL U U U R R R R R R DR DWW WW W W W W W WNNRNNNNNNNNRRRRRRRBR P B
W N H O WVWOONOU & WNROWODWNOUB®WNIEROWVWOWWNOUERWNHROWO®NOUE®EWNHREOWLWO®NOUWE®E WNHEREOWO®NO U WN L O

* File: functions.cpp

* Project: ECE 578 Rhino Robot Wave Motion

* Modified Date: 12/06/2013

* Contents: Implementations for function prototypes in functions.h

#include "functions.h"

bool array check(int* in array, int array size, int value){

gy gy Sy gy Sy Sy S S
* Checks an input array for the presence of a given value

*

* Inputs:

* in array int* input array that will be examined

* array size int size of the array, to avoid out-of-bounds memory references

* value int the integer being sought

* Outputs: None

for(int i=0; i<array size; ++i){

if (in_array[i] == value){
found = 1;
break;
}
}
return (found);
}
void select random(int count, int limit, int return array[], int* exclude, int exclude_size) {
/e e
* Randomly selects the given number of indices
*
* Inputs:
* count int the number of elements to select
* limit int designates highest value allowed - all selections will fall in [O,
* return_array int¥* a pointer an array to populate with element selections
* OQutputs: None

int new_index = 0;
for (int i=0; i<count; ++i){

// first, initialize current array element to a known invalid value to avoid errors from
// performing comparisons on uninitialized values

return_array[i] = -1;

do{
// proposed random index
new_index = rand()%limit;

// if elements to exclude are present, check random value against them
if (exclude != NULL) {
if (array_check(exclude, exclude size, new_index)){
continue;
}
}

// check to make sure the proposed index is not already in the array
}while(array check(return array, i, new_index));

return_array[i] = new_index;

}

return;

limit)

W O NU R W N R

NNN R P R R R B R R R
N H O W ®NOoO U WNR O

* File: functions.h

* Project: ECE 578 Rhino Robot Wave Motion

* Modified Date: 12/06/2013

* Contents: Various function prototypes and their dependencies

#ifndef FUNCTIONS H_
#define FUNCTIONS H_

#include <stdlib.h>
#include "parameters.h"

using namespace std;
void select_random(int count, int limit, int* return array, int* exclude=NULL, int exclude size=0); //
bool array check(int* in_array, int size, int value); // checks in array for the presense of value

#endif

S

W O NU R W N R

BB R DR R B DWW WW W W W W W WNNNNNNNNNDNNKRERRRRRBRRB R 2
N o WN O WVWONOoOUEWNHEOWOONOUE® WNEREOWO®NOU S WN PP O

* File: parameters.h

* Project: ECE 578 Rhino Robot Wave Motion
* Modified Date: 12/14/2013

* Contents: Macros that define IGA behavior

#ifndef PARAMETERS H_
#define PARAMETERS H_

// Arduino Macros
// Button Pins
#define B _RUN EPR 7
#define B_STR EPR 6
#define NEXT MOT 4
#define RUN_MOT 5
#define STR_MOT 3

// LED Pins

#define LEDO 8
#define LED1 9
#define LED2 10

// Serial port
#define BAUD 9660 // 9600 Baud rate
#define CONTROL SERIAL 7E2 // 7 Data bits, even parity, 2 stop bits

// if NUM MOTORS is changed, make sure to update the initialization in command::reset()
#define NUM_MOTORS 3 // number of motors allowed

// Adruino Uno has 2KB of SRAM - consider this when choosing commands per motion
// and motions per generation

#define MAX_COMS 25 // maximum number of commands that can comprise a motion
#define MOTIONS 5 // number of motions in each generation

// New generation parameters

#define MUT_RATE 50 // percentage of new generation that is generated by mutation

#define CROSS_RATE 50 // percentage of new generation that is generated by crossover

#define MAX DELTA 30 // maximum percentage away from current values an attribute is allowed to change c
// also limits how many attributes can be copied during crossover

// Other
#define MAX DIST 128 // maximum length of a move command

#endif

W O NU R W N R

Aoy U UG U U U U U RS R D DR R B DWW WWW W W W W WNNNNNNNNNNRERRRBRRERRBR B
B W N HOWO®NOUWUE® WNKREOWO®NOUWE WNROWOONOOU B WNROWOWNOUBSWNEROWOWNO U S WNR O

// Scott Lawson

// Greg Stromire

// ECE 4/578 Perkowski

// Fall 2013

//

// Serial translation between baudrates
// for LEAP sensor and Rhino Arm

// Modified from Arduino Serial Example

#define NODEJS BAUD 115200 // 115200 Baud rate for the cpu to arduino USB
#define RHINO_BAUD 9660 // 9660 Baud rate for the arduino to Rhino
#define CONTROL SERIAL_7E2 // 7 Data bits, even parity, 2 stop bits

nno

String inputString = // a string to hold incoming data
boolean stringComplete = false; // whether the string is complete

void setup() {
// initialize serial:
Serial.begin(NODEJS_ BAUD, CONTROL);
Seriall.begin(RHINO BAUD, CONTROL);

// reserve 200 bytes for the inputString:
inputString.reserve(200);
statusString.reserve(200);

}

void loop() {
// print the string when a newline arrives:
if (stringComplete) {
Seriall.println(inputString);

// clear the string:
inputString = "";
stringComplete = false;

}
}

/*

SerialEvent occurs whenever a new data comes in the
hardware serial RX. This routine is run between each
time loop() runs, so using delay inside loop can delay
response. Multiple bytes of data may be available.

*/
void serialEvent() {
while (Serial.available()) {
// get the new byte:
char inChar = (char)Serial.read();
// add it to the inputString:
inputString += inChar;
// if the incoming character is a newline, set a flag
// so the main loop can do something about it:
if (inChar == '\n') {
stringComplete = true;
}
}
}

void serialEventl() {
while (Seriall.available()) {
// get the new byte and send it up to the computer
Serial.write(Seriall.read());
}
}

W O NU R W N R

NN N NN N0 U U U UG U s R R DR R D DR W WWWWW W W W WNNNNMNNNNNNRRRRBRRRBRR B
U B WNRF O WOWNOU B WNEROWONOURWNEREOWO®NOUVUEBEWNHEREOWLWO®NOOUWEB®EWNREOWLWO®NOUWE® WNROWO®DNO U S WN KL O

/*

Global variables for tracking movement

*/

// Number of milliseconds between frame updates
var UPDATE CYCLE = 100;

// Tracking current steps and direction for each motor

// Limit counts how many repeated steps remaining, tracking if a motor

// is stopped before a motion is complete to allow it to stop

var stepsForMotor = {'A': 0, 'B':0, 'C':0, 'D':0, 'E':0, 'F':0},
limitForMotor = {'A': 0, 'B':0, 'C':0, 'D':0, 'E':0, 'F':0},
directionForMotor = {'A': '+' '‘B':'+', 'C':s'+', 'D':'+', 'E':'+",

// Collection of movements

var pinchPosMotion = {'motor': 'A', 'direction': '+', 'steps': '70'}

var pinchNegMotion = {'motor': 'A', 'direction': '-', 'steps': '70'}

var wristPosMotion = {'motor': 'B', 'direction': '+', 'steps': '70'}

var wristNegMotion = {'motor': 'B', 'direction': '-', 'steps': '70'}

var forearmPosMotion = {'motor': 'C', 'direction': '+', 'steps': '70'}

var forearmNegMotion = {'motor': 'C', 'direction': '-', 'steps': '70'}

var elbowPosMotion = {'motor': 'D', 'direction': '+', 'steps': '70'}

var elbowNegMotion = {'motor': 'D', 'direction': '-', 'steps': '70'}

var shoulderPosMotion = {'motor': 'E', 'direction': '+', 'steps': '70'}

var shoulderNegMotion = {'motor': 'E', 'direction': '-', 'steps': '70'}

var waistPosMotion = {'motor': 'F', 'direction': '+', 'steps': '70'}

var waistNegMotion = {'motor': 'F', 'direction': '-', 'steps': '70'}

// Mutable array of motions waiting to be sent
var queuedMotions = new Array();

// Mutable array tracking motions in use.
var motorsInUse = new Array(),
responding = 0;

/*

Global variables for control and communication

*/

// Lock synchronization to prevent race condition

// when accessing shared data (queuedMotions, motorsInUse,
var locks = require('locks');
var mutex = locks.createMutex();

// Serial Communication to the Arduino Initialization
var SerialPort = require("serialport").SerialPort;
var serial = new SerialPort("/dev/tty.usbmodeml421", {
baudrate: 115200,
databits: 7,
stopbits: 2,
parity: 'even'

})i

// Leap Motion Initialization
var Leap = require('leapjs');
var leapster = new Leap.Controller ({
host: "127.0.0.1",
port: 6437,
enableGestures: true,
focused: true,
background: true
})i
var frame;
leapster.connect();

/*

e.l)

Fuzzifying Prototypes add new functionality to Frame objects

*/
// Checks that the sensor
Leap.Frame.prototype.fingersAreSpread = function() {
if (this.hands && this.hands.length) {

'F':'+'}

if (this.hands[0].fingers && this.hands[0].fingers.length > 2) {

return true;

}
}

return false;

r

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150

}i

Leap.Frame.prototype.mostlyPinched = function(grab) {

return (grab < 30) ? (true) : (false);

}

Leap.Frame.prototype.mostlyOpened = function(grab) {
return (grab > 85) ? (true) : (false);

}

Leap.Frame.prototype.rolledLeft = function(roll) {
return (roll < -0.5) ? (true) : (false);

}

Leap.Frame.prototype.rolledRight = function(roll) {
return (roll > 0.5) ? (true) : (false);

}

Leap.Frame.prototype.pitchedForward = function(pitch) {
return (pitch > 0.5) ? (true) : (false);

}

Leap.Frame.prototype.pitchedBack = function(pitch) {
return (pitch < -0.5) ? (true) : (false);

}

Leap.Frame.prototype.reachedForward = function(reach) {
return (reach > 35) ? (true) : (false);

}

Leap.Frame.prototype.reachedBack = function(reach) {
return (reach < -35) ? (true) : (false);

}

Leap.Frame.prototype.liftedUp = function(height) {
return (height > 250) ? (true) : (false);

}

Leap.Frame.prototype.droppedDown = function(height) {
return (height < 100) ? (true) : (false);

}

Leap.Frame.prototype.slidLeft = function(slide) {
return (slide < -85) ? (true) : (false);

}

Leap.Frame.prototype.slidRight = function(slide) {
return (slide > 85) ? (true) : (false);

}

/*

Functions act on fuzzy values with fuzzy IF-THEN logic

*/

// Motor A - Pinching fingers
// IF fingers ARE spread AND hand IS grabbing THEN send grab motion
// IF fingers ARE spread AND hand IS releasing THEN send release motion
function controlPinch(frame) {
if (frame.fingersAreSpread()) {

var hand
var grab

frame.hands[0];
Math.abs((hand.stabilizedPalmPosition[1l] - hand.sphereCenter[1]));

if (frame.mostlyPinched(grab)) {
sendMotionCommand (pinchPosMotion) ;

if (frame.mostlyOpened(grab)) {
sendMotionCommand (pinchNegMotion);

}
}

// Motor B

// IF fingers ARE spread AND hand IS rolled left THEN send rotate wrist clockwise motion
// IF fingers ARE spread AND hand IS rolled right THEN send rotate wrist counter-clockwise
function controlwWrist(frame) {

motion

151
152
153
154
155
156
157
158
159

161
162
163
164
165
166
167
168

170
171
172
173
174
175

177
178
179
180
181
182
183
184

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

if (frame.fingersAreSpread()) {
var roll = frame.hands[0].roll();

if (frame.rolledLeft(roll)) {
sendMotionCommand (wristPosMotion) ;

}
if (frame.rolledRight(roll)) {
sendMotionCommand (wristNegMotion) ;

}
}

// Motor C
// IF fingers ARE NOT spread AND hand IS pitched down THEN send forearm down motion
// IF fingers ARE NOT spread AND hand IS pitched up THEN send forearm up motion
function controlForearm(frame) {

if (!frame.fingersAreSpread()) {

var pitch = frame.hands[0].pitch();

if (frame.pitchedBack(pitch)) {
sendMotionCommand (forearmNegMotion) ;

if (frame.pitchedForward(pitch)) {
sendMotionCommand (forearmPosMotion) ;

}
}

// Motor D
// IF fingers ARE NOT spread AND hand IS reached back THEN send elbow reach back motion
// IF fingers ARE NOT spread AND hand IS reached forward THEN send elbow reach forward motion
function controlElbow(frame) {
if (!frame.fingersAreSpread()) {

var z = frame.hands[0].stabilizedPalmPosition[2];

if (frame.reachedBack(z)) {
sendMotionCommand (elbowNegMotion) ;

}
if (frame.reachedForward(z)) {
sendMotionCommand (elbowPosMotion) ;

}
}

// Motor E
// IF fingers ARE NOT spread AND hand IS moved down THEN send shoulder down motion
// IF fingers ARE NOT spread AND hand IS moved up THEN send shoulder up motion
function controlShoulder (frame) {

if (!frame.fingersAreSpread()) {

var y = frame.hands[0].stabilizedPalmPosition[1l];

if (frame.droppedDown(y)) {
sendMotionCommand (shoulderPosMotion) ;

if (frame.liftedUp(y)) {
sendMotionCommand (shoulderNegMotion) ;

}
}

// Motor F
// IF fingers ARE NOT spread AND hand IS moved right THEN send rotate right motion
// IF fingers ARE NOT spread AND hand IS moved left THEN send rotate left motion
function controlWaist(frame) {

if (!frame.fingersAreSpread()) {

var x = frame.hands[0].stabilizedPalmPosition[0];

if (frame.slidLeft(x)) {
sendMotionCommand (waistPosMotion);

}

226 if (frame.slidRight(x)) {

227 sendMotionCommand (waistNegMotion) ;
228 }

229 }

230 | }
231
232 /*

233 | Rhino Commands

234 */

235 || // Write motion out over serial (locked function)
236 | function sendMotionCommand(motion) {

237 // Check if currently moving. If so, wait

238 // for it to complete its current motion.

239 if (motorsInUse.indexOf (motion.motor) == -1) {

240

241 // 1If motor is not stuck, then send motion command

242 if (! (limitForMotor[motion.motor] > 2 && directionForMotor[motion.motor] == motion.direction))
243

244 // Send motion command

245 serial.write(motion.motor);

246 serial.write(motion.direction);

247 serial.write(motion.steps);

248 serial.write('\n');

249

250 // Add motor to array of in-use motors

251 motorsInUse.push(motion.motor);

252

253 // Mark motor as not-stuck

254 limitForMotor[motion.motor] = 0;

255 directionForMotor[motion.motor] = motion.direction;
256 }

257 }

258

259 // Send poll command if first motor to move, starts poll chain
260 if (motorsInUse.length) {

261 pollMotor (motorsInUse[responding]);

262 }

263 | }

264

265/ // Ask Rhino how many steps remain
266 | // for a motor to complete a motion
267 || function pollMotor (motor) {

268 // Send Poll

269 serial.write(motor);
270 serial.write('?"');
271 serial.write('\n');
272 | }

273

274 || // Stop motor before motion completes
275 || function stopMotor (motor) {

276 // Send Stop

277 serial.write(motor);
278 serial.write('X");

279 serial.write('\n');

280

281 // Reverse a few steps
282 var dir = '+';

283 if (directionForMotor[motor] == dir) {
284 dir = '-';

285 }

286 serial.write(motor);
287 serial.write(dir);

288 serial.write('2');

289 serial.write('\n');

290 || }

291

292 | // Stop all motors and halt all motion
293 | function stopAllMotors() {

294 stopMotor('A');
295 stopMotor('B');
296 stopMotor('C');
297 stopMotor('D"');
298 stopMotor('E');
299 stopMotor('F');

300 }

301
302 /*

303|| Status Update Signals

304 || */

305 | leapster.on('connect', function() {

306 console.log("Leap Successfully connected.");

307 serial.write('Q');

308 serial.write('\n');

309 });

310

311 || leapster.on('deviceDisconnected’', function() {

312 console.log("deviceDisconnected");

313 });

314

315

316 | /*

317|| Main loop for receiving LEAP sensor data

318 */

319| serial.on("open", function() {

320 console.log('Serial Connection to Arduino Ready.');

321

322 // Reduce updates to given milliseconds

323 leapster.on('connect', function() {

324 setInterval(function() {

325 // Wait for polling to release lock,

326 // timeout after 50 ms

327 mutex.timedLock (50, function (error) {

328 if (error) {

329 console.log('Control could not get the lock within timeout, so gave up');
330 } else {

331 // We got the lock

332 var frame = leapster.frame();

333

334 if (frame.hands && frame.hands.length > 0) {
335 /*

336 Motor D for Defective

337 controlElbow(frame);

338 */

339

340 // Control motors for Rhino Arm

341 controlPinch(frame);

342 controlWrist (frame);

343 controlForearm(frame);

344 controlShoulder (frame);

345 controlWaist (frame);

346 }

347 // Release lock when finished

348 mutex.unlock();

349 }

350 })i

351 }, UPDATE CYCLE); // Updates in milliseconds

352 })i

353 });

354

355 || /*

356 | Asynchronous callback executes when data is received from the Arm
357| */

358 | serial.on("data", function (data) {

359 if (mutex.tryLock()) {

360 if (motorsInUse.length) {

361 // Decode serial into integer value

362 var stepsRemaining = parselnt(new Buffer(data).toString('hex'), 16);
363 motorResponding = motorsInUse[responding];

364

365 // If motor reached a physical limit, the poll would
366 // repeat the same number. Count 10 then send stop command.
367 // Checked by counting repeated values of stepsRemaining
368 if (stepsForMotor[motorResponding] == stepsRemaining) {
369 limitForMotor [motorResponding] += 1;

370 if (limitForMotor[motorResponding] > 10) {

371 // Limit reached stop motor and remove from tracking array
372 stopMotor (motorResponding) ;

373 motorsInUse.splice(responding, 1);

374

375 // Reset counter for limit

377
378
379
380
381
382
383
384

386
387
388
389
390
391
392
393

395
396
397
398
399
400
401
402

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

})

stepsForMotor [motorResponding] = 0;

// Release lock to allow LEAP loop to send commands
mutex.unlock();
return;

} else {
limitForMotor[motorResponding] = 0;

}

// Record current steps remaining to later check for repeats
stepsForMotor [motorResponding] = stepsRemaining;

// When motor reaches 0, it responds with 32
// (0 + 32 to avoid returning an ascii command char)
// Stop polling at 50 to be able to send command
// before it ends to prevent stuttering motions
if (stepsRemaining < 50) {
// Not necessarily done moving but enough
// to stop polling and remove motor from array
motorsInUse.splice(responding, 1);
} else if (motorResponding) {
// Re-issue poll
// Point to next one to answer poll
responding++;

}

// Reset 'responding' index to beginning of array
// When it reaches the end
if (responding == motorsInUse.length) {
responding = 0;
}
// Release lock to allow LEAP loop to send commands
mutex.unlock();
}
// Check to see if there are still motors moving,
// if so, poll. This also re-sends the poll request after
// an attempt to acquire the lock has failed.
if (motorsInUse.length) {
pollMotor (motorsInUse[responding]);

}

The Reference about Rhino XR Robot System
ECES565 Robotics class
Version 2.0

(©This document is not freely distributable. Please let me know.

Contents

1 Rhino Robot System : Overview

1.1 XR-3RObOtICAIM o o o o o e e e e e e e e e e
1.2 MARKII Controller e e e e e e e e e e
1.3 Teachpendant e e e e e e e e

Specifications of Rhino XR System

2.1 Basicdimensions e e e e e e e e e e e e e
2.2 SEIVO . o e e e e e e e e e e e e e e e e
23 Encoder e e e e e e
24 OPLCS . v v v v e e e e e e e e e
25 Interface L e e e e

Teach pendant operation

3.1 Home position o i i e e e e e e e e e e e e e
32 MotionKeysS o e e e e e e e e e e e
Control and Programming

4.1 <return> Initiate a motormove
42 ? Questioncommand
43 AtoH start motor commands
44 1 I-Inquiry command
45 1] J-Inquiry command oL,
46 K K-INQUIRY command
47 L Turn Aux. Port#1 ON
48 M Turns Aux. Port#1 OFF
49 N Turns AuX.port#2 ON
4.10 O Turns Aux. Port#2 OFF
411 P setoutput LineHigh

4.12 Q Reset

mailto:seung@postech.edu
Administrator

ECES6S Robotics - CONTENTS

413 R
414 X

5 Simulator : SIMULATR

set output Line Low
Stop motor command

ECES6S Robotics - 1 RHINO ROBOT SYSTEM : OVERVIEW

1 Rhino Robot System : Overview

XR-3 robotic arm,
Mark III controller,
Robot control computer,
Teach pendant.

Rhino robot system consists of

Fig. 1 shows the total system of the Rhino XR-3 robot system.

Teach Pendant

nonoooan
pooogoar

 (slwlsfalelala]s
gooonooo

Switch must be =g,
up at all times. :

Loy e

To Host Computer

Figure 1: Overview of the Rhino XR-3 Robot system

1.1 XR-3 Robotic Arm

The XR-3 robotic arm in Fig. 2 has a jointed-spherical geometry with five degrees of freedom in the arm
and wrist. the five axes of motion include rotation at the wrist, shoulder, and elbow for positioning the hand;
then, flex and rotation motion in the wrist for orientation of the gripper. The motion is transferred from the
axis drive motors to the joint by chain, and lever linkages. The rate of rotation of the axis drive motor is
reduced by gears in the motor and the linkage between the motor and the joint.

The axis drive motors are dc servo devices with optical encoders attached to determine joint angles and
arm position. The optical encoders are not visible but can be accessed by removal of the encoder covers on
the ends of the motors. Each drive motors is electrically connected to the robot controller by a 10 conductor
ribbon cable which supplies power to the motor and carries position data from the encoder. Each axis name
and servo motors are shown in Fig. 2. A sixth servo drive motor and associated linkage to operate the
gripper are mounted in the wrist assembly. The gripper servo drive does not cause motion in any arm axes.

1.2 MARK III Controller

The MARK III system in Fig. 3 is a complete manufacturing work cell controller with an internal micro-
processor, operating system software, and interface electronics. The electronics provides interface for 8 dc
servo motors, a 32 key hand-held teach pendant, and a standard RS-232C serial port for an external com-
puter. The controller is shown in Fig. 3. The controller can communicate with either an external computer
or the Rhino teach pendant for the arm control information. For example, the computer can send one of

ECES65 Robotics - 1 RHINO ROBOT SYSTEM : OVERVIEW

f___da—— GFRIFPER

WRIST
ROTATION

SHOLULDER

Figure 2: Joint and Servo motor name

ECES6S Robotics - 1 RHINO ROBOT SYSTEM : OVERVIEW

Mode Switch Aux Port
Teach Reversing
Pendant Port Switch

Reset

Aux Ports—_\

NC NS oe.

R l NO ROBOTS

4_.._.

s
lIE] [WH]
d] Ginn) (o]
A B C D E G H
ot T oo T v T ot B o I v I vt o l';'ﬂ
|::,I\ =
L Outputs inputs
Encoded Motor Ports Motor Power

Host Computer RS-232C Port Switch
Power Indicator

(a) The front of the Rhino controller

Main Power Switch Controller
' Serial Numbers

0000000 [ODDDpOD DoGOO00D™ DopnpoDn

Fuse Cover

(b) Back of the controller

Figure 3: The controller of Rhino XR system

ECES6S Robotics - 2 SPECIFICATIONS OF RHINO XR SYSTEM

the 13 work cell and robot commands to the controller over the RS-232C serial port. When the controller
receives the command from the computer, the microprocessor inside the controller executes the command.
The serial port and the commands included in the operating system software in the controller permit robot
and work cell control from a remote computer. Using the same technique, the Rhino teach pendant can be
used to control robot motion and develop work cell programs.

The controller has a MODE SELECT switch to put controller in either the teach pendant or remote
computer mode. Two power switch allow separate control of the main power and servo motor power. A
push button, labeled RESET, reestablishes the initial values in the controller memory and operating system.
Also, the reset button on both the controller and the teach pendant are your EMERGENCY stop
buttons. A pilot map on the front panel indicates when the main power switch is in the “on” position.

The pendant is a 32 key microprocessor controlled programming unit with a 7 character digital display
and a reset button to restart the controller and act as an emergency stop.

If you do experiment with Rhino robot system. Please do first below in order.

e Check Motor Power switch is off.
e Turn on main controller power - Main power switch is at rear panel of the controller. (Fig. 3(b))

Check the Motor Switch.

Turn on the motor power switch.
e Push reset switch.

e Check ‘init’ is displayed in Teach pendant 7-segment LED panel.

And the power down sequence is the reverse of the power-up order. Use the following sequence to take the
Rhino work cell in the teach pendant programming mode out of service.

1. Turn “off” arm motor power.
2. Turn controller power “off”.

3. Turn the computer “off™.

1.3 Teach pendant

The Rhino robot system has both a teach terminal and a teach pendant to program the robot arm and work
cell hardware. The Rhino XR-3 teach pendant, illustrated in Fig. 7, is connected to the MARK III by a
ribbon cable and connector on the front panel of the controller. The pendant is a 32 key microprocessor
controlled programming unit with a 7 character digital display and a reset button to restart the controller
and act as an emergency stop. Fifteen of the keys are used for program development and 16 provide motion
control for the 5 arm axis servos, gripper servo, and 2 auxiliary servos. The teach pendant supports work
cell program development in two ways: 1. complete work cell programs can be generated using only the
teach pendant keys, 2. arm positions for programs written on the teach pendant terminal are taught using the
teach pendant.

The teach pendant, the microcomputer in a Rhino robot system, is connected to the MARK III controller
through the RS-232C serial port.

2 Specifications of Rhino XR System

In this section, specification of the Rhino XR system is presented. And, some components of the Rhino
robot system are also explained.

ECES6S Robotics - 2 SPECIFICATIONS OF RHINO XR SYSTEM

2.1 Basic dimensions
This is the Rhino system in a nutshell. The following tables give the specifications for the Rhino system.
e Basic specifications for the Rhino robot arm

Vertical Reach : 68cm

Radical Reach : 60cm

Lifting Capability (arm extended) : 0.45Kg
Weight of Rhino : 7.7Kg

Weight of Controller : 12.3Kg

e Resolution at each axis

Axis Motor Resolution
Fingers A not applicable
Wrist Rotation B 0.18 degrees theoretical
Wrist Flex C 0.12 degrees theoretical
Forearm D 0.12 degrees theoretical
Shoulder E 0.12 degrees theoretical
Waist F 0.23 degrees theoretical

e Motor gear ratios and final reductions

Axis Motor Gear Ratio | Encoder steps

Fingers 96/1 not applicable
Wrist Rotation 165.4/1 5.51
Wrist Flex 66.1/1 8.8
Elbow 66.1/1 8.8
Shoulder 66.1/1 8.8
Waist 66.1/1 44

e Speed at each axis

Axis Speed(degrees/second)
Fingers 1 sec. to open and close fully
Wrist Rotation 32
Wrist Flex 45
Elbow 30
Shoulder 20
Waist 60

e Link length for finding D-H parameters is shown in Fig. 4.
The dimension is expressed in terms of inches.

2.2 Servo

The Rhino uses a closed loop encoder system that works well when adjusted correctly. First is the encoder
wheel. As the wheel turns it feeds data to the controller. From this data the controller determines if the

ECES6S Robotics - 2 SPECIFICATIONS OF RHINO XR SYSTEM

6.50 S | SR ' : 10.25

Figure 4: Rhino XR system : specification

ECES6S Robotics - 2 SPECIFICATIONS OF RHINO XR SYSTEM

Actual positon COMP ARATOR
information -
POSITION &
ENCODER :[)
Desired
I] Error Position .
Signal information
Power

Figure 5: The servo control loop

correct position. Lets say the motor has turned when it was not supposed to. The controller would turn the
motor on in the opposite direction to return it to the desired position This is fine expect the encoder now has
gone to far in the other direction.

Fig. 5 shows basic control loop of servos. A feedback system that consists of a sensing element, an
amplifier and a servomotor used in the automatic control of a mechanical device.

2.3 Encoder

Encoder is used to find the position of the servo motor. The encoders used on the Rhino system are in-
cremental encoders. Each consists of an aluminum disk with light and dark bands placed radially on one
side. Two reflective optical sensors are located to detect the different bands and placed so as to produce two
signals (A and B) which are 90 degrees out of phase. The large motors (C-F) have six dark and six light
bands per revolution; the remaining motors have 3 sets of bands.

When the A signal leads the B signal, the motor is moving in one direction and when the A signal trails
the B signal, the motor is moving in the other direction. The logic in the controller is arranged to be able to
make the necessary discrimination.

Given that there are two signals from the encoder, there are four states that the incremental encoder can
provide. They are 00,01, 11 and 10. Note that if these were interpreted as decimal values, the flow is from 0
to 1 to 3 to 2 and back to zero, not 1,2, 3 and 4. Also note that it is not possible to go from 00 to 11 without
going through one of the intermediate states and that it is not possible to go from 10 to 01 without going
through an intermediate step. These are called forbidden states and if these changes occur, they indicate an
error in operation. Fig. 6 show the transition of the encoder state.

A counter can be set up using either 1,2 or 4 positions of the encoder. If we pick one position, we would
increment or decrement the counters only when the states went all the way around the above diagram. This
method is used in the Mark III controller. If we picked two positions, we would increment or decrement the
counters whenever the state changed from one side of the diagram to the other side on the diagram. If we
picked four positions, we would change the encoder count every time the state changed.

The controller uses eight registers in its memory as error registers for the motors. As long as a
register is zero, the motor has no power applied to it. If an encoder turns, the register is added to or
subtracted from as needed. As soon as the controller sees a number in the error register, it applies power to
the motor in a way that will turn it in the direction that will decrement the register as the motor turns. This
is the holding algorithm that maintains motor position at all times.

When the controller receives a START command from the host computer, it adds the given number to
the motor error register. This has the effect of making the controller start the motor in a direction that will

ECES6S Robotics - 2 SPECIFICATIONS OF RHINO XR SYSTEM

10

4 o\"
N4

Figure 6: Encoder states

make that error register go to zero. Each cycle of the encoder changes the error register by one. When the
error hoes to zero, the motor is turned off. If the motor overshoots, the power to the motor will be reversed
automatically to bring the motor back to the zero position.

With the Rhino XR-3 robot, the large motors have 6 detectable state per motor revolution and the small
motors have 3 states per revolution.

24 Optics

The optics system is the electronic circuitry that feeds;information back to me controller with regard to me
position of the motor. The information needed by the controller is the position of the motor and the status of
the microswitch. There are a few key assemblies used in the optics system to perform these functions. They
follow, and each is very necessary to have the robot function correctly.

1. Optics board assembly
2. Encoder wheel assembly
3. Ribbon cable assembly

Optic Board Assembly

The Optic printed circuit board includes 2 infra-red LEDs, 2 infra-red Phototransistors,biasing resistors,
a cable header, and an mounting bracket. There are two types of assemblies used with the XR-3 robot. They
are exactly the same except they use different mounting1 brackets. The three hole bracket is for the small
motors in the hand. The body brackets seem to have 2, 4, or 6 hole types. The cable header is a ten pin male
header used to connect the ribbon cable into the optic board. The biasing resistors are used to determine the
current that is allowed to go through the LEDs and the phototransistors. The optics printed circuit board is
used to mount all of the components and provide electrical connections needed.

The LEDs are infra red so you cannot see the light. However the light is quite bright and is on any time
5 Volts is applied to the circuit board. The light is directed out of the LEDs towards the phototransistors.
This will turn the phototransistor on. The phototransistors are turned off when they cannot see the infra red
light. This condition occurs when the encoder wheel is between the LED and the phototransistor and they
do not line up with one of the slots in the wheel. This prevents the infra red light from getting through.

As soon as the phototransistor sees infra red light,the base region of the phototransistor saturates, allow-
ing current to flow thru the device. The collector drops from 4.80 volts to .70 volts. This change of state is
noticed by the controller, which is constantly monitoring the optics. In order for the controller to monitor

ECES6S Robotics - 3 TEACH PENDANT OPERATION

11

the optic, the signal must go thru the circuit board,thru me header, into the ribbon cable, and finally out the
ribbon cable into the controller. If its path is broken in any of these places, a problem will occur. Also, the
controller must read both of the phototransistors for the system to function properly.

There are three other electrical connections needed from each optic board. The first is the limit switch
line which is connected from pin 6. This line is normally at a 5 volt level. When the limit switch is closed the
switch grounds pin 6 and goes to a buffer on the controller board.

Another function of the optic board is to feed motor power to the motors. This is done by pins 9 and
10 for positive and negative motor power and pin 7 and 8 for the motor ground. Across these two lines is a
capacitor to ground spikes. The motor power lines are positioned away from the logic lines to prevent cross
talk in the cable and also to prevent any noise from the motors being coupled into the logic.

2.5 Interface

Configure your computer’s RS-232C port for the following:

9660 Baud
7 Data bits
even parity
2 stop bits

The Rhino controller does not use a handshaking protocol. Therefore, the DB 25 connectors must be modi-
fied.

Electric Connections : You must have an RS-232C serial interface, capable of both sending and receiving
data. The Mark III controller uses only 3 of 25 communication lines on teh DB25 connector.

e Line 2 : carries data transmitted by controller, received by host computer.
e Line 3 : carries data received by the controller, sent by host computer.

e Line 7 : the common data ground line.

3 Teach pendant operation

The teach pendant on the Rhino system includes a separate microprocessor, system memory, and software.
The version of software present in the teach pendant is displayed when the following command sequence is
entered using teach pendant keys.

The Rhino teach pendant in Fig. 7 has 32 keys, a power “ON” indicator, a seven digit display, and a
reset button. The pendant includes a “SHIFT” key the function or command on the upper half of the key is
entered. The reset button serves as an EMERGENCY stop during program execution.

3.1 Home position

All industrial robots have a HOME position for the arm. Home is a defined or known position in the work
envelope from which all new programs and stored programs start. A home position is necessary for the
repeatability of the points taught in the program For examples, a robot loading a machine with parts from
a parts feeder moves from the start position to the point in the work envelope where the tooling picks up a
part. If the start position changes so will the position of the fooling as it tries to acquire a part. So unless the
robot tooling starts from a known position every time, the programmed points will not be repeatable.

ECES6S Robotics - 3 TEACH PENDANT OPERATION

12

4
RHI ® -
®
Mark il Pendant with 1/0 control
OFF ON
Go Hard Set Soft 1 1
H H E a
ome ome * *_ GR'P
LEARN / Go Soft |
ENTER Home A A
* User DELAY 2 2 WRIST
RUN / EDIT ; ROTATE
HALY B B
DELETE ERASE / 3 3
Move Clear WRIST
INSERT END / FLEX
Move PLAY [+ C
! Previous Previous 4 . 4 CoT
Move Motor ELBOW
Next Next FLEX
Move Motor D D
Control 5 5
LOAD
To Host T SHOULDER
Aux ' FLEX '
SAVE Output E E
No WAIT Jump On L3 6
Input input i ‘ — WAIST
WAIT Jump To ROTATE
Input Program F F
Toggle Gosub On 7 7
AUX
Output input
s e —3| |4—~~| moTOR
TURN Gosub wEo “G"
i Output Program G G
i
1 8 8
< AUX
Slow
SHIFT — —h 4| MOTOR _
> e
Fast H H 4' RESET J

Figure 7: Rhino XR system teach pendant

ECES65 Robotics - 4 CONTROL AND PROGRAMMING

13

The Cincinnati Milacron family of robots has a single home position which must be taught during the
power-up sequence using the command “Home, Set”. The Rhino system has two types of HOME positions.
The HARD HOME is a mechanical home position which is determined by limit switches located on the
waist, shoulder, elbow, wrist flex, and wrist rotate axes. The SOFT HOME is a software home and can be
set at any position in the work envelope. Hard home must be performed before a new move sequence is
taught and before a stored sequence is loaded and executed. The soft home position is a point in the work
envelope selected by the programmer because it is an efficient starting point for the desired move sequence.
The hard home command command is that holding the SHIFT down while the function key is pressed
causes the function described in the upper block of the key to be initiated. The function in the bottom block
is activated without the SHIFT key. At this case you may see "PGoHArd” in LCD panel.

3.2 Motion keys

The position axes are waist, shoulder, and elbow, while the orientation axes include the two wrist motions
flex and rotation. In addition, the gripper open and close control is part of the motion key group on the Rhino
pendant.

SYSTEM RESPONSE : When any of the axis motion keys, A through H, are pressed the axis motor
moves 10 increments on the optical encoder which is about 1.2 degrees for the position axes. Each axis
has a key for either the positive or negative direction. The teach pendant display indicates the current axis
move with the following readout ”Pb- 276”. The first digit will be “P” to indicate the PLAY mode, the
second lowercase character b’ indicates Motor label and third ‘-’ means direction of motor rotation, and
last number means position.

If a motor port is open (motor disconnected) then the teach pendant displays “P off” when the motor
key is pressed.

If a motor hits an object and cannot complete the move entered on the teach pendant then the teach
pendant displays “PStALL” which indicates stalled motor. The motor on the stalled axis then reverses
direction to move away from the stall point. The gripper “open” (axis heads pointing out) and “close”
(arrow heads pointing in) keys cause the Rhino electric servo gripper to simulate the opening and closing of
a pneumatic gripper.

4 Control and Programming

The command set of the Rhino robot controller system has been designed to allow the complete control of

the Rhino controller. Through the use of only 14 basic commands, the user can control the position of all

eight motors, read any of the 16 input bits, set any of the 8 output bits and control the AUX ports. All of

Rhino Robot’s software uses there kernel commands to create the higher level languages, such as RoboTalk.
The Rhino controller has th following commands:

e <return> : Carriage return (initiate a move)
e 7 : Return distance remaining

e A-H : Set motor movement value

I : Inquiry command (read limit switched C-H)

J : Inquiry command (read limit switched A-B and inputs)

K : Inquiry command (read inputs)

ECES65 Robotics - 4 CONTROL AND PROGRAMMING

14

C - o0

Motor Direction Move Count
Buffer Buffer Buffer
\~\\ +
\\ O_Y
Error Allsl[clipl[EI[F |[GllH
Registers

Figure 8: Processing of a motor move command

e L : Turn Aux #1 port ON
e M : Turn Aux #1 port OFF
e N : Turn Aux #2 port ON
O : Turn Aux #2 port OFF
e P: Set output bits high
Q : Controller reset
e R : Set output bits low
e X : Stop motor command

The Rhino Robot controller accepts commands as ASCII characters; each character is acted upon immedi-
ately upon receipt. Unlike most computer peripheral equipment, the controller does not wait for the receipt
of a carriage return to signify a command completion; in fact the carriage return is considered a command
itself.

When the motor move command letters A-H are received, the motor specifier is stored in the motor
buffer over writing its previous contents. The receipt of a motor specifier also sets the direction buffer to
the plus direction and clears (sets to zero) the move count buffer. Any sign character (+or-) is stored in the
direction buffer over writing its previous contents. When a number digit is received, the contents of the
move count buffer is multiplied by ten and the new digit is added to me product. In this way the move count
buffer correctly accumulates a multi-digit number.

When a carriage return character is received, the controller adds or subtracts the amount in the move
count buffer to the value in the error register pointed to by the motor buffer. If the direction buffer has been
set to a plus the amount is added; if the direction buffer has been set to a minus the amount is subtracted.

The following illustration shows the relationships of the input buffers and the motor error registers. In
this example, a C command was received followed by a -50. When a carriage return is received, the ¢ motor
error register will be decremented by 50.

ECES65 Robotics - 4 CONTROL AND PROGRAMMING

15

The receipt of a carriage return can have no effect on the controller if the move count buffer is zero,
as it is after a motor specifier(A-H) has been received. You can take advantage of this fact if you want to
terminate all commands sent to the Rhino robot controller with a carriage return which would be the case if
you were using standard PRINT statements in BASIC to control the robot. Preceding all commands with a
motor specifer allows you m use the carriage return.

In the following command descriptions, the format and the examples of the commands will illustrate the
use of the leading motor specifier. This will lead to a more intuitive understanding of the command set.

4.1 <return> Initiate a motor move

Whenever a carriage return is received from the host computer, the controller takes the move count in the
motor move count buffer and adds it to (or subtracts it from depending on the sign of the direction buffer)
the value in the error register of the motor that is addressed by the motor buffer.

Thus,if the command sequence C-40 <return>is sent to me controller, a C will be stored in the motor
buffer, a minus will be stored in the direction buffer and 40 will be stored in the move count buffer. Upon
receipt of the <carriage return>, this data is transferred to the C error register and the controller will start
the C motor in the negative direction with the intention of moving it 40 additional encoder steps in that
direction. If the controller now receives a carriage return only, it will add another -40 to the error register
for the C motor. With the above sequence of commands, the motor will eventually make a move of -80 total
encoder counts.

42 ? Question command

Requests steps remaining to move on motors A thru H.

When making long moves it is necessary to determine how far a motor has to move before more move
information can be sent to me controller. The command used to determine how far a motor has yet to move
is the Question command.

The format of the command is
[< motorID >| <? >< return >

Examples of the command as issued from a BASIC program:

PRINT “D?” < return >
PRINT “A?” < return >
PRINT “C?” < return >

where the first letter identifies the motor error register to be interrogated and the question mark indicates that
the remaining error count for that motor is to returned to the host computer. As always, the controller adds
32 to the error value before returning it to the host computer. Adding 32 to the count prevents the controller
from sending ASCII command codes to the host computer. The controller always sends the absolute value
of the error signal; it does not send the direction of the error signal. This means that you can determine how
far a motor still has to move but cannot determine whether the move is to be in the positive or the negative
direction.

NOTE : using the “?” command does not re-issue the move in the move buffer because the motor 1D
letter preceding the “7” always clears the move buffer.

ECES65 Robotics - 4 CONTROL AND PROGRAMMING

43 AtoH start motor commands

starts motors A to H and moves them a number of encoder steps

The start command is used m instruct the controller to start a given motor and to move it in a given di-
rection by a given number of encoder steps. The value is added to the move in progress.

The format of the command is

< motorlD > [< sign >| < encodercounts >< return >

where < motor ID > is an uppercase letter A-H, <sign> is an optional + or - character (if no character is
present a + is assumed) and <encoder counts> is a number from O to 127.

Example : for programming in BASIC: PRINT ¢“C-93”

The above command will move the “C” motor in the negative direction by an additional 93 encoder
positions. The positive sign is not needed for moves in the positive direction and may be omitted. The
carriage return is used to execute the command. Only one motor can be addressed at one time. Other
samples of the command are:

B-6 <return>

A+21 <return>

C33 <return>

D-125 <return>

H <return> (clears the move count buffer, therefore no move is made)
<return> (repeats the previous move)

Sending only a carriage return without a motor move, after a motor move command, repeats the last motor
move command. Even carriage returns that are part of another command (discussed later) will re-issue the
move command. In order to cancel a move command that would be carried out by the receipt of a carriage
return, all commands should be preceded by a motor ID character (A thru H). Any motor ID letter sets the
move buffer to zero if there are no numbers attached to it. Once the move buffer is cleared other commands
with carriage returns will not activate the move instruction. For example the commands Similar to me
following will clear the move buffer.

A <return>
CI <return>
EJ <return>
BL <return>

Once the move buffer is cleared, other commands may be issued without the motor ID characters. The move
buffer is active after each nor-zero motor move command. It should be cleared before using commands
when necessary.

44 1 I-Inquiry command

Returns status of microswitches on motor ports C,D,EF,G,and H

ECES65 Robotics - 4 CONTROL AND PROGRAMMING

17

The INQUIRY command allows the user to interrogate the status of the 6 microswitches on the C,.D.E.F,G
and H motors. The format of the command is as follows:

[< motorID >| < I >< return >

Where the motor ID is included if the move buffer is to be cleared. Sample uses of the command as issued
in a BASE program:

PRINT “r” <return>
PRINT “AL”<return> (Clears the move buffer first)

The command returns the status of the 6 microswitches in one byte. The returned byte is interpreted as
follows after subtracting 32:

Bit Motor
0 LSB C
1 D
2 E
3 F
4 G
5 H
6 _
7 MSB -

The controller adds decimal 32 to me byte before transmitting it to me host computer so that no control codes
will be transmitted to me host computer. Upon receipt of the returned byte, it is the users responsibility to
subtract 32 from the byte before using it. A closed microswitch is seen as a 1(one). An open microswitch is
seen as a O(zero).

Bits 6 and 7, the most significant bits, are not used.

The host computer must be ready to receive the inquiry byte before sending the control another command.
See detailed examples under the sections on running the robot with the IBM-PC.

45] J-Inquiry command

Returns status of microswitches on motors A and B and input lines 1,2,3 and 4

The J-INQUIRY command tells the controller to send back the status of the microswitches on motors A
and B and the status of input lines 1,2,3 and 4 of the 8 line input port. The returned data byte is of the
form 00BA4321+32, where A and B are the levels of the A and B motor limit switches and 4,3,2, and 1 are
the levels of the input lines 4 through 1. As with all other information returned to me host computer, 32 is
added to the returned value measure that no ASCII control character is returned to the cmnputer. You use
the J-INQUIRY command just like the J-INQUIRY command.

The format of the command is

[< motorlD >| < J >< return >

where, the <motor ID> has to be included if you want to clear the move buffer.

Examples of the command as issued form a BASE program:

ECES65 Robotics - 4 CONTROL AND PROGRAMMING

18

PRINT*J” <return>
PRINT“CJ” <return> (Clears the move buffer first)

When interpreting the bits returned by the motor controller, a value of O means that the input is low (or that
a microswitch is closed). A value of 1 means that the input is high (or that a microswitch is open).

Bit Meaning
0LSB Input 1
1 Input 2
2 Input 3
3 Input 4
4 Motor “A” Limit Switch
5 Motor “B” Limit Switch
6 _
7 MSB -

Bits 6 and 7 are not used.

The controller adds decimal 32 to me byte before transmitting it to me host computer so that no ASCII
control codes will be transmitted to me host computer.

The host computer must be ready to receive the inquiry byte before sending the controller another com-
mand. See detailed examples under the sections on running the robot with the IBM-PC.

46 K K-INQUIRY command

Returns the status of input lines 5,6,7 and 8.

The K-INQUIRY command tells the controller to send back the status of inputs 5 through 8 of the 8 line
input port. The returned data is of the form 00008765432, where 8,7,6 and 5 are the levels of input lines 8
through 5. The format and usage of the K command is similar to me I and J commands.

The format of the command is
[< motorlD >] < K >< return > .

where, the jmotor ID; has to be included if you want to clear the move buffer. Examples of command as
issued form a BASIC program:

PRINT “K” <return>
PRINT “EK” <return> (Clears the move buffer first)

The command returns values that may be interpreted as follows after subtracting 32 from the byte received.

Bit Meaning
OLSB Input5

1 Input 6
2 Input 7
3 Input 8
4 _
5 -
6 -

7 MSB -

ECES65 Robotics - 4 CONTROL AND PROGRAMMING

19

Bits 4,5,6 and 7 are not used

The controller adds decimal 32 to me byte before transmitting it to me host computer so that no ASCII
control codes will be transmitted to me host computer.

The host computer must be ready to receive the inquiry byte before sending the controller another com-
mand. See detailed examples under the sections on running the robot with the IBM-PC.

47 L Turn Aux. Port#1 ON
Turns Aux port#1 ON

The L command turns auxiliary port 1 ON. Auxiliary port 1 provides 1 amp at-20 volts DC. The for-
ward/reverse switch above the aux. connector determines the polarity of the pins and can be used to reverse
a PM DC motor connected to the port.

The format of the command is

[< motorlD >] < L >< return >

where, the <motor ID> has to be included if you want to clear the move buffer.

Examples of command use as issued in a BASIC program:
PRINT “L” <return>
PRINT “CL” <return> (Clears the move buffer first)
48 M Turns Aux. Port#1 OFF
Turns Aux port#1 OFF

The M command turns auxiliary port 1 OFF. You use it just as you would the L command. See descrip-
tion of L command.

49 N Turns AuX. port#2 ON
Turns Aux. port#2 ON

The N command turns auxiliary port#2 ON. Auxiliary port#2 provides 1 amp at +20 volts DC. The for-
ward reverse switch above the aux. connector determines the polarity of the pins and can be used to reverse
a PM Dc motor connected to the port.

The format of the command is
[< motorID >] < N >< return >

where, the <motor ID> has to be included if you want to clear the move buffer. Examples of command use
as issued by a BASIC Program:

PRINT “N” <return>
PRINT “CN” <return> (Clears the move buffer first)

ECES65 Robotics - 4 CONTROL AND PROGRAMMING

20

410 O Turns Aux. Port#2 OFF
Turns Aux Port#2 OFF

The command turns auxiliary port 2 OFF. You use it just as you would the N command see description
of N command.

411 P set output Line High
Sets an output line HIGH

The P command tells the controller that the next digit it receives identifies the output line to be set high.
The 8 output lines of the output port are numbered from 1 to 8. The output lines are set high during startup
and after a reset. The Rhino controller output lines provide TTL level signals.

The format of the command is
[< motorID >] < P >< outputlinenumber >< return >

where the <motor ID> has to be included if you want to clear the move buffer. Examples of command use
as issued by a BASIC program:

PRINT “P3” <return>
PRINT “AP6” <return> (Clears the move buffer first)

412 Q Reset

Resets the entire Controller

The Q command tells the controller to reset itself. The controller will clear all of its internal registers,
turn off all motors, turn off all the auxiliary ports, set all output lines high and reset its communication port
according to the BAUD switch in the controller.

The Q command is a convenient way of resetting the controller (in software) without having to press the
reset button.

The format of the command is
< Q >< return >

Examples of command use as issued in a BASIC program:
PRINT “Q” <return>

complicated software programs often start with the “Q” command ensure that the controller is at a known
(reset) state when the program starts.

413 R set output Line Low

sets an output line LOW

The R command is similar to me P command but the next digit received after the R identifies the output

ECES65 Robotics - 5 SIMULATOR : SIMULATR 21

line to be set low by the controller. The 8 output lines are numbered from 1 to 8. The output lines are set
high during startup and after a reset. The Rhino controller output lines provide TTL level signals.

The format of the command is
[< motorID >] < R >< outputlinenumber >< return >

Examples of command use as issued by a BASIC program:

PRINT “R5” <return>
PRINT “CR2” <return> (Clears the move buffer first)

414 X Stop motor command

Stops motors A thru H

It is often necessary to turn off a motor that is stalled one way to do this is to determine how far the motor
is from completing it’s move and then sending a move command that will reverse the motor far enough to
cancel the remaining portion of the move. A faster way is to send the stop command.

The format of the stop command is
< motorlD >< X >< return >

Examples of the command as issued from a BASIC program:

PRINT “BX” <return>
PRINT “DX” <return>
PRINT “HX” <return>
PRINT “AX” <return>

where the first character identifies the motor to be stopped and the “X” is the stop Command. The "X
command is followed by a carriage return and does not re-issue the preceding move command because the
motor letter clears the buffer. When the “X” command is received, the remaining portion of the motor move,
(the portion that was still to be moved,) is lost and cannot be recovered. If the information is important, the
user should first determine how far the motor still has to go with the “?” command, store the information in
the host computer and then send the “X” command to stop the motor.

5 Simulator : SIMULATR

In this section, we introduce simulator of Rhino XR system from [1]. It’s name is SIMULATR. The simula-
tor helps you to test your own program before you run with real Rhino robot. The simulator remain in ram
if once the simulator is executed.

Basically, the simulator is hocking the signal of serial port, which is generated from your own control
program. Therefore, you just execute your own program and check whether your code is correct or not.

We recommend to run simulator before experiment with Rhino robot. (If you do not run, your in-
correct program may make the Rhino robot broken.)

ECES6S Robotics - REFERENCES

22

You can get the simulator from Homepage of this class or TA (You can email to me).

We attach a few pages of usage of the simulator. From these, you can get all information about the simulator,
SIMULATR.

Note. 1 Owner’s manual, Service manual and Student’s manual of Rhino XR system are available. If
you want those, you can copy it. Come to Control Lab. at laboratory.
Note. 2 Please let me know errors in this material for other people.

References
[1] Rhino Robots, Inc., Owner’s Manual.
[2] Rhino Robots, Inc., Rhino XR-3 Robot Instructor’s Manual.

[3] Rhino Robots, Inc., Rhino XR-3 Robot Service Manual.

[4] Rhino Robots, Inc., Rhino XR-3 Robot Software Manual.

http://www.postech.ac.kr/class/ee565
mailto:seung@postech.edu

ECES6S Robotics - REFERENCES

23

Chapter 2

A Graphics Robot Simulator

Robot control programs are often developed off-line using a simulated robot and work-
cell. This way the actual robot does not have to be taken out of productive service
during program development, it is only needed for the final debugging and testing of
the software. In this chapter we introduce a three-dimensional color graphics robot sim-
ulator program called SIMULATR that simulates a robot and its environment (White
et al., 1989). The objective of SIMULATR is to allow users to develop and test robot
control programs ofl-line without a physical robot present using the computer program-
ming language of their choice. SIMULATR is a terminate and stay resident (TSR)
program that runs in the background on IBM PC/XT/AT computers and true compat-
ibles. It intercepts commands sent to the robot controller through the COMI device
and responds to the commands as if it were the robot controller. SIMULATR supports
a variety of robotic arms including the five-axis Rhino XR-3 educational robot. A copy
of SIMULATR and supporting software is supplied on the distribution disk.

2.1 Installation

SIMULATR runs under the MS-DOS operating system, Version 2.18 through 3.30.
The hardware requirements for SIMULATR include an IBM PC/XT/AT computer, or
true compatible, with 512K of memory, a COM1 serial port, and a graphics adaptor
card (CGA, EGA, Hercules). SIMULATR occupics approximately 75K of memory and
therefore can be run on computers with less than 512K total memory. However at
least 512K is recommended in order to provide adequate space for user programs and
program development tools such as text editors, compilers and interpreiers. The list
of currently supported graphics boards can be found in the file README.DOC on the
distribution disk.

SIMULATR has been designed to be applicable to several different types of robots
and workcells. This is achieved through the use of data files which configure the robot
simulator at installation time. The easiest way to install SIMULATR, using default
values for the robot and workeell data files, is to issue the following batch file command
in response to the operating system prompt:

ECES6S Robotics - REFERENCES

24

This will install the Rhino XR-3 robot in its default workcell. During installation,
two temporary data files are created. Consequently, the disk which contains SIMULATR
must not be write-protected, and it must contain adequate free space (about 10K) for
these files. A more general way to install SIMULATR is to use the INSTALL command
with data file arguments as follows:

INSTALL <robot.dat> [workcell.dat)

Here <robot.dat> is a data file which specifies the robot to be simulated, while
[workcell.dat] is an optional data file which specifies the workcell or environment within
which that robot is to operate. Here upper case letters are literals that should be
typed exactly as they appear, angle brackets, < --- >, denote an argument that must
be supplied by the user, and square brackets, [---], denote an optional user-supplied
argument.

2.1.1 Robot data file: RHINO.DAT

The first parameter in the INSTALL command is the data file that specifies the robot
to be simulated. To simulate the Rhino XR-3 educational robot, the user specifies
the file named RHINO.DAT. If a file extension is not supplied, the default extension
(.DAT) is assumed. Additional robots such as the Adept One robot (ADEPT.DAT) and
the Intelledex 660 robot (INTEL.DAT) can also be simulated. A list of the currently
supported robots can be found in the disk file README.DOC. Although different
robots can be simulated, they all use the same generic controller, a controller that
is upward compatible with the Rhino XR Series controller (Hendrickson and Sandhu,
1986). ;
Each robot data file contains information which describes the kinematics and phys- -
ical appearance of the manipulator. For each joint of the robot, the joint angle 8, joint |
distance d, link length a, and link twist angle « are specified. Next, the joint precision,’
the limits of travel for each joint, and the default joint speed are specified. This isé
foliowed by information about the location of the joint limit switch, the joint direction,
and the joint label used for the movement commands. A description of the type of tool)]
mounted at the end of the arm is also included. Finally, a physical description of thei
shape of each link of the arm is specified as a series of vectors which describes how tol
draw the link in a local coordinate frame. A color index is included for each link sof
that adjacent links can be distinguished from one another by using different colors orj
different shades of a color. 4

2.1.2 Workcell data file: RHINOCEL.DAT

The second parameter in the INSTALL command is an optional data file parameter a::i
specifies the environment in which the robot is to operate. The default workcell data fi

ECES6S Robotics - REFERENCES

25

supplied for the Rhino XR-3 robot is named RHINOCEL.DAT. Customized workcell
data files can also be created off-line by the user with an interactive program called
WORKCELL.EXE which prompts the user for a description of a work environment.

Each workcell data file contains information which specifies the size of the workspace,
the nature of the objects which populate the workspace, and the sensors which can be
used to locate and identify these objects. The first information specified in the workcell
data file is the size of the workspace which is defined by three numbers (X,Y, Z) as
follows:

W={(z,9,2):0<z<X, -Y<y<Y,0<z2<7Z} (2.1)

The workspace W consists of the region in front of the robot (0 <z < X), above
it (0 < 2z £ Z), and to both sides of it (~Y < y < Y). A narrow region behind the
robot sufficient to show the back of the robot is also displayed. In order to make the
picture of the robot as large as possible on the screen, the size of the workspace should
be made as small as the reach of the robot permits.

Several workcell objects in the form of rectangular blocks can be placed in the
workeell. The number of blocks, and their sizes, positions, orientations, and colors are
specified in the workcell data file. These blocks can be manipulated by the simulated
robot. Consequently tasks such as pick-and-place operations and stacking and unstack-
ing of blocks can be performed. The blocks can also be sensed by a simulated overhicad
camera. The characteristics of the camera including its location, its ficld of view, and
its resolution in pixels are specified in the workcell data file.

2.1.3 Program development restrictions

When SIMULATR is installed, neither the Turbo Pascal integrated environment (TP)
nor the Turbo C integrated environment (TC) can be used due to hardware conflicts.
Consequently, one must first remove SIMULATR using the following batch file in order
to usc an integrated program development environment.

REMOVE

Repeatedly removing SIMULATR for program development and reinstalling it for
program testing is cumbersome at best. However, there is an alternative. The Turbo
Pascal command-line compiler (TPC) and the Turbo C command-line compiler (TCC)
can be used for program development without removing SIMULATR. This is the recom-
mend procedure. The Microsoft BASIC interpreter (BASICA) can also be used when
SIMULATR is installed.

During program testing, the user may have occasion to abort a program with the
<Cirl/C> key. If SIMULATR is in the graphics display mode when the user program
is aborted, the screen will remain in the graphics mode. At this point the screen must
be returned to the text mode to resume normal operation. This can be achieved by

ECES6S Robotics - REFERENCES

26

X 4

Figure 2.1: Rhino XR-3 in Home Position Using Perspective (1,1,1)

2. Change Perspective: <Alt/F2>

The change perspective option allows the user to alter the three-dimensional view
of the simulated robot by entering a new perspective vector. The user is prompted for
three integer coordinates, (z, y, z), which specify a point on the line of sight uscd to view
the robot. For example, to view the robot from directly above, a perspective vector of
(0,0,1) can be entered. This places the viewer’s eye on the z axis looking down toward
the origin. The coordinate values entered must be integers in the range -9,...,9,
and they should be separated by spaces or commas. Pressing <Enter> after the third
value completes the input. Only the relative values of the integers are important as
the viewing distance, or scale, is adjusted automatically to display the entire workspace
as specified in the file <workcell.dat>. The default perspective (1,1,1) represents an
isometric projection. The robot can be viewed from the front, side, or top, respectively,
by using the columns of the 3 x 3 identity matrix I for the perspective vector. For
example, to view the Rhino XR-3 robot from its left side the perspective (0,1,0) can be
used as shown in Figure 2.2.

3. Display status line: <Alt/F3>

The status line is a 1 x 80 text window which contains user-selectable robot status
information. The <Alt/F3> key updates the status line and displays it at the top of the
screen. It may be necessary to redisplay the status line if the user program has erased
it by writing over it or by clearing the screen. This problem can be easily circumvented

ECES6S Robotics - REFERENCES

27

if the user program writes to a text window starting at line 2. A text window can be
defined during initialization using, for example, the Window procedure in Turbo Pascal
or the window function in Turbo C. This way the status line will be unaffected by the
user program. The LOCATE command in BASIC also can be used to avoid writing in
the status line area of the screen.

X | HH

Figure 2.2: Rhino XR-3 in Home Position Using Perspective (0,1,0)

-

4. Select status Line: <Alt/F4>

When <Alt/F4> is repeatedly pressed, the contents of the status line circulale
through the options listed in Table 2.2. The Joint variable vector, g, specifies the joint
angles of the revolute joints (degrees) and the joint distances of the prismatic joints
(cm). The tool-configuration vector, w, specifies the position, p, and orientation, v, of
the tool (Schilling 1990). The limit switch vector, s, specifies the state of each limit
switch, open or closed. The error count vector, e, specifies the current values of the

encoder error counter for each joint. Finally, the block configuration vectors.consist of
the (z,y, z) coordinates of the centroid of each block and the principal angle, 3, of each
block in the zy plane. All block configuration values are measured with respect to the

robot base coordinate frame.

The status line at the top of the screen is periodically updated by SIMULATR as the
robot moves. Consequently, if a user program writes to the line at the top of the screen,
it will be overwritten by SIMULATR. However, if the blank line option is selected, |
SIMULATR will not overwrite any user data. In this way, the user program can have |

ECES6S Robotics - REFERENCES

28

Option | Display

Blank

Joint variable vector ¢
Tool-configuration vector w
Limit switch vector s

Error count vector e

Block 1 configuration vector

e O OB W N

54+n | Block n configuration vector

Table 2.2: Status Line Options

access to the status line area of the screen although this is not recommended. Instead,
it is recommended that the user program write to a text window below the status line.

The status line is a convenient tool for debugging and testing robot control programs
because it requires little overhcad and it is updated automatically as the robot moves.
Once the robot has come to a halt, the graphics display option <Alt/I'1> might then
be used to examine the new robot status visually. '

5. Enable/disable path display: <Alt/F5>

The enable/disable path display option is used in conjunction with the display robot
command (#) discussed in Section 2.4. When the path display is enabled, the current
picture of the simulated robot is not erased before an updated picture is drawn. In
this way a multiple-exposure sequence of robot positions can be obtained to show the
path taken. When SIMULATR is installed, it starts out with the path display option
disabled.

6. Enable/disable SIMULATR: <Alt/F6>
The enable/disable SIMULATR option toggles the simulator between active and

inactive states. When SIMULATR is enabled or active, all commands sent to the robot
controller through the COMI1 device are intercepted and processed by the simulator

which resides in the background and responds as if it were the robot controller. When -

SIMULATR is disabled, the commands are passed directly through to the robot or
whatever hardware is connected to the COM1 port. The default condition is enabled.
Consequently, if SIMULATR is installed and a physical robot is to be controlled by
a user program, then SIMULATR must first be disabled. SIMULATR can also be
removed entirely by executing the batch file REMOVE.BAT. This will free up the
memory occupied by SIMULATR and configure the COM1 device for communication
with a physical Rhino XR-3 robot.

ECES6S Robotics - REFERENCES

29

7. Enable/disable COM1 trace: <Alt/F7>

The enable/disable COM1 trace option is useful for debugging user programs. When
the trace option is enabled, all communication through the COM1 serial port is echoed
to the screen. Characters written to the COM1 device by a user program appear on
the screen in white, while responses from SIMULATR appear in a nonwhite color. Re-
sponses from SIMULATR are expressed in one-byte two’s complement form, so negative
numbers appear as integers in the range 128 ...255.

When the COM1 trace option is enabled, SIMULATR also enters a single-step mode
in the sense that it pauses each time a complete command (carriage return) is sent to
the COM1 device. Pressing any key will then erase the most recently echoed command
and continue execution of the user program. The location on the screen where the
information is displayed is determined by the cursor location at the time the trace
option is enabled. When SIMULATR is installed, it starts out with the COM1 trace
option disabled.

8. List command mode keys: <Alt/F8>

This is a help screen which summarizes the command mode keys <AlLt/F1> ... <
Alt/F10> and <Alt/Home>. Therefore, this option displays the information found
in Table 2.1. Pressing any key returns control the screen active when <Alt/F8> was
pressed.

9. List program mode controller commands: <Alt/F9>

This is a help screen which summarizes the program mode cantroller commands.
These commands, which control the motion of the simulated robot, are discussed in
detail in Section 2.3. Pressing any key returns control the screen active when <Alt JF9>
was pressed.

10. List program mode environment commands: <Alt/F10>

This is a help screen which summarizes the program mode environment commands.
These commands, which select SIMULATR display options and read workcell sensors,
are discussed in detail in Section 2.4. Pressing any key returns control the screen active
when <Alt/F10> was pressed.

11. Home Robot: <Alt/Home>

The home robot option returns the simulated robot to the soft home position spec-
ified in the file <robot.dat>. When SIMULATR is first installed, the robot starts out
in the home position. This option can be used for initialization. It can also be used for
recovery from the following error conditions created by a user program.

ECES6S Robotics - REFERENCES

30

(a) Local stalls

If the user program attempts to drive a joint of the simulated robot past ‘a"hard
limit specified in the file <robot.dat>, this creates a local stall condition because the
sorresponding motor on the physical robot would stall at this point. During a local stall
sondition, the stalled link turns red in the graphics display, and the status line shows
. exclamation point next to the joint variable of the stalled joint. For convenience,
.he simulated link does not halt when it encounters a joint range limit (except for the
jaws of the tool). Instead, when a joint is driven past its normal range of travel, a
low-pitched sound is generated each time at attempt is made to move the joint. In
addition, when the graphic display is selected with the <Alt/F1> key, an out-of-range
arror message is displayed at the bottom of the screen.

(b) Global stalls

A second type of error condition occurs when a user program attempts to move the
iool tip outside its legal range: = > 0, z > 0, > 8. These constraints prevent the
tool tip from moving behind the robot base, below the work surface, or inside the robot
hody, respectively. When these constraints are violated, a global stall condition occurs
which is indicated by having all the links turn red in the graphics display, and having
an exclamation point appear at the end of the status line. Again, for convenience, the
imulated robot will not stall. Instead it will move the tool into the forbidden region.
However, when this occurs a low-pitched sound is generated each time at attempt is
made to move the robot. In addition, when the graphic display is selected with the
<Alt/F1> key, an out-of-range error message is displayed at the bottom of the screen.

(c) Abnormal program termination: <Ctrl/C>

On occasion, the user may want to terminate a program prematurely using the
<Cirl/C> key. If this is done when SIMULATR is in the graphics display mode (see
the # command in Section 2.4), the screen with remain in the graphics mode. At this
point the screen must be returned to the text mode to resume normal operation. This is
achieved automatically with the <Alt/Home> key. Pressing the <Alt/Home> key will
home the robot, clear the screen, and return to the text mode. Whenever a program is
lerminated with a <Ctrl/C> key, the user should then press the <Alt/Home> key to
reinitialize SIMULATR. ‘

